
UZ/FRI

1 Pinhole camera

� Barrier with a hole and a film
� Focal length - f
� Perspective projection equation f

−y′ =
−z
y

� Apature - size of pinhole
� Lense - focusing element
� Depth of field - distance and size of small blurring
� Field of view - φ = tan−1( d

2f )
� Chromatic aberration - different wavelength refraction
� Spherical aberration - spherical lenses
� Vignetting - edge of camera absorbtion
� Radial distortion - lens imperfections
� Digitalization - discretization, quantization

2 Color spaces

� Additive models (RGB) - colors added to black
� Subtractive models (CYMK) - colors added to white
� Linear color space - CIE XYZ
Artificial primaries X,Y, Z
x = X

X+Y+Z , y = Y
X+Y+Z , z = Z

X+Y+Z , x+ y + z = 1
Chromacity is represented using only [x, y]

� RGB
� Nonlinear color space - HSV
� Uniform color space - CIE u’v’

3 Basic image processing

Basic process

� Localize
� Describe
� Classify

3.1 Thresholding

Transforms an image into a binary mask

� Single(two) threshold approach

FT [i, j] =

{
1, if T1 ≤ F [i, j](≤ T2)

0, otherwise

� General approach

FT [i, j] =

{
1, if F [i, j] ∈ Z

0, otherwise

� Global binarization
Otsu’s method
Minimizes within class variance
σ2
within(T ) = n1(T )σ

2
1(T ) + n2(T )σ

2
2(T ) ≡ maximization of

σ2
between(T ) = σ2 − σ2

within(T ) = n1(T )n2(T )[µ1(T )− µ2(T )]
Find T ∗ = argmaxT [σ

2
between(T )]

� Local binarization
Estimate local threshold in neighborhood W TW = µW +
kσW for k ∈ [−1, 1]

� Shade compensation using polynomials

3.2 Morphology

Structuring element

{
Fit: all 1’s cover 1’s in SE

Hit: at least 1 covers a 1 in SE

� Erosion g = f ⊖ s

g(x, y) =

{
1, if s fits f

0, otherwise

� Dilation g = f ⊕ s

g(x, y) =

{
1, if s hits f

0, otherwise

� Opening A ◦B = (A⊖B)⊕B - opens gaps, holes
� Closing A •B = (A⊕B)⊖B - closes gaps, holes

3.3 Region descriptors

Labeling components
� 4-8 way connectivity
� Connected components

f o r px in image top to bottom l e f t to r i g h t :
i f px == 1 :
i f one neighbor top or l e f t :
l a b e l = n l a b e l

i f both ne ighbors :
l a b e l = n l a b e l i f they have same l a b e l
e l s e copy l e f t l a b e l and add equ iva l ency

e l s e :
l a b e l = new l a b e l

� Describe region
– Area A
– Perimeter l
– Compactness c = l2(4πA)
– Circularity l/c . . .

Color similarity between objects
� Average color
� Fit Gaussian distribution
� Histograms - H(c) = number of px with color c
Robust to translation, scale, partial occlusion

� Intensity normalization
r = R

R+G+B , g = G
R+G+B , b = B

R+G+B
Reduce to 2D ([r, g]) since r + g + b = 1

Distances
� L2 norm (Euclidean) d(Q,V ) =

√∑
i(qi − vi)2

� χ2(Q,V ) =
∑

i
(qi−vi)

2

qi+vi

� Hellinger dHell(Q,V ) =
√
1−

∑
i

√
qivi

3.4 (Non)linear filters

Types of noise
� Salt and pepper
� Impulse noise
� Gaussian noise

Convolution
� Correlation G = H ⊗ F
G[i, j] =

∑k
u=−k

∑k
v=−l H[u, v]F [i+ u, j + v]

� Convolution G = H ⋆ F
G[i, j] =

∑k
u=−k

∑k
v=−l H[u, v]F [i− u, j − v]

If H[−u,−v] = H[u, v], then ⊗ ≡ ⋆
� Properties

– Linear - h ⋆ (α1f1 + α2f2) = α1(h ⋆ f1) + α2(h ⋆ f2)
– Commutative - f ⋆ g = g ⋆ f
– Associative - (f ⋆ g) ⋆ h = f ⋆ (g ⋆ h)

and so also ((f ⋆ b1) ⋆ b2) ⋆ b3 = f ⋆ (b1 ⋆ b2 ⋆ b3)
– Derivative - ∂

∂x (f ⋆ g) = ( ∂
∂xf) ⋆ g = ( ∂

∂xg) ⋆ f
� Boundry conditions

– Crop
– Bend image around
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– replicate edges
– Mirror image

� Image pyramids
Nyquist theorem - sample the signal by at least 2f - Remove
high frequencies before sub-sampling
Gaussian pyramid
Gi = (Gi−1 ⋆Gaussian) ↓ 2, G0 = image

4 Edge detection and image gradients

4.1 Image derivatives

Discrete case (images)
∂f(x,y)

∂x = f(x+1,y)−f(x,y)
1

Gradient magnitude

∇f = [∂f∂x ,
∂f
∂y ]

Direction - θ = tan−1(∂f∂x/
∂f
∂y )

Magnitude - ∥∇f∥ =
√
(∂f∂x )

2 + (∂f∂y )
2

Smarter derivative - ∂
∂x (I ⋆ G) = I ⋆ ( ∂

∂xG)

4.2 Canny edge detector

Good edge detector

� Detection - minimizes FP and FN
� Localization - close to true edge
� Specificity - minimize local maxima

Process

1. Calculate I∂ = I ⋆ ∂
∂xG

2. Calculate θ, ∥∇f∥
3. Non-maxima suppression
4. Trace edges by hysteresis thresholding

4.3 Hough transform

Process

1. For each edge point compute all possible parameters passing
through that point

2. For each set of parameters cast a vote
3. Select parameter combinations that receive enough votes

Lines - x cos θ − y sin θ = d

Circles - (x− a)2 + (y − b)2 = r2

Extensions

� Use gradient direction for θ
� Use magnitude for voting weight
� Generalized Hough transform

5 Fitting models

Transformation of points x′
i = f(xi;p)

5.1 Least-squares

Minimizing a continuous error function p̃ = argminpE(p)

ϵi = f(xi;p)− yi
E(p) =

∑N
i=1 ϵ

2
i

Strategy

1. Rewrite the cost function E(p) into vector-matrix form

2. ∂E(p)
∂p = 0; solve for p

Derivative of linear and quadratic form
∂ATp
∂p = AT, ∂pTAp

∂p = 2Ap

5.2 Normal equations

Rewrite the error into Ap = b
Solve by p = A†b = (ATA)−1ATb
Weighted least squares
E(p) =

∑N
i=1 wiϵ

2
i

Solve by p = (ATWA)−1ATWb

5.3 Homogenus systems

Constrained least squares Ap = λp → Ap = 0 with ∥p∥2 = 1
Solve by svd(A); p is eig. vector with smallest eig. value

5.4 Nonlinear cost function

� Gradient descend
� Newtons method
� Levenberg-Marquardt . . .

5.5 RANSAC

Ransac loop
1. Randomly select s correspondences
2. Fit model parameters
3. Count projected inliers
4. Remember the optimal parameters

e - probability of outlier
s - minimal number of correspondences to fit a model
p - probability of drawing all inliers at least once

Number of iterations N = log (1−p)
log (1−(1−e)s)

6 Keypoints and correspondences

6.1 Keypoint detection

Harris corner detector

M =

[
G(σ) ⋆ I2x G(σ) ⋆ IxIy
G(σ) ⋆ IxIy G(σ) ⋆ I2y

]
= R

[
λmax 0
0 λmin

]
RT

det(M)− αtrace2(M) > t, 0.04 < α < 0.06
det(M) = AB − C2, trace(M) = A+B
CRF (I) = det(M)− αtrace(M)
Process

1. Image derivatives
2. Squared derivatives
3. Gaussian filtered squared derivatives
4. Corner response function
5. Non-maxima suppression

Hessian corner detector

Hessian(I) =

[
Ixx Ixy
Ixy Iyy

]
CRF (I) = det(Hessian(I)) = IxxIyy − I2xy
Process

1. Image derivatives
2. Second order derivatives
3. Corner response function
4. Non-maxima suppression

Laplacian of Gaussian
Used as scale response function

LoG = ∇2g = ∂2g
∂x2 + ∂2g

∂y2

Process
1. Laplacian pyramid
2. Scale space non-maxima suppression

Difference of Gaussian
DoG = G(x, y, kσ)−G(x, y, σ)
Process

1. Gaussian pyramid (faster because of down-sampling)
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2. DoG pyramid from Gaussian
3. Scale space non-maxima suppression
4. Remove low contrast points
5. Remove points detected at edges

6.2 Local descriptors

� Vector of region intensities
� SIFT

6.3 SIFT

1. Split region in 4x4 cells
2. Calculate gradient
3. 8 bin histogram of gradient weighted by magnitude and region

center
4. Stack histograms and normalize

Rotation invariance
36 bins by angle, rotate gradients using dominant rotation, create
descriptor for every orientation with magnitude at least 80% of max-
imum.
Affine adaptation
Start with circular window, estimate new window using the covari-
ance matrix of current window. Iterate until convergence.
Rotate R = U−1 and scale S−1/2 from window ellipse Σ = USUT ,
calculate descriptor using affine adapted region.

6.4 Correspondences

� Find most similar descriptor
� Keep only symmetric
� Keep only distinctive (ratio to second most similar)

7 Cameras and stereo systems

Projection: extrinsic world → camera, intrinsic camera → image

7.1 Pinhole camera model
X
Y
Z
1

 7→

 fX/Z
fY/Z
1

 K =

 ax s x0

0 ay y0
0 0 1

 P0 = K[I|0]

Principal point [px, py], focal length f , pixels per meter [mx,my],
skew s
ax = fmx, ay = fmy, x0 = pxmx, y0 = pymy

X̃cam = R(X̃ − C̃) =

[
R −RC̃
0 1

]
X, Camera origin in w.c.s C̃

P = K[R|t], t = −RC̃
Nonlinearity correction using polynomial
x̃ = xd + (xd − cx)(K1ρ

2 +K2ρ
4 + . . . ), ỹ = . . .

Degrees of freedom
[px, py]: 2, f : 1, [mx ≡rectangular my]: 1(2), s: 1, R: 3, t: 3

7.2 Homography

wx′ = Hx
Direct linear transformation

[a×] ≡

 0 −az ay
az 0 −ax
−ay ax 0

; x′
i ×Hxi = 0; Ah = 0

Preconditioning

Tpre =

 a 0 c
0 b d
0 0 1

; x̃ = Tprex; x̃
′
i × H̃x̃i = 0; H = T

′−1
pre H̃Tpre

Set a, b, c, d so that mean x̃i is 0 and variance is 1

7.3 Vanishing points

v =

[
fXD/ZD

fYD/ZD

]

7.4 Calibration

Estimate P from a known calibration object.

� Using DLT and preconditioning x′
i ×Pxi = 0 and decompose

to K[R|t]
� Using minimization of error

εi =

[
εxi
εyi

]
= (xi − PXi) E(P ) =

∑N
i=1 ε

T
i εi

� Multiplane calibration

7.5 Triangulation

Using DLT with [x1×]P1X = 0 and [x2×]P2X = 0, then mini-
mize sum of re-projection errors using iterative algorithm E(X) =
d2(x1, P1X) + d2(x2, P2X)

7.6 Epipolar geometry

Epipolar constraint XT ([T×]RX ′) = 0; xTEx′ = 0

Essential matrix E = [T×]R constrains x and x′ in meters

Epipolar line vector

l′ = ETx; l = Ex′

Fundamental matrix constrains x̂ and x̂′ in pixels

F = K−TEK
′−1

Epipolar lines l̂′ = FTx; l̂ = Fx′

Epipole Fe′ = 0, FT e = 0

7.7 Simple stereo

Baseline bx, focal length f

3D from disparity

X = xL
bx
d , Y = yL

bx
d , Z = f bx

d

Global disparity optimization

Globally consistent solution

Edata(di) = e−similarity(di)

E(di) = Edata(di) + λES(di)

Semi global block matching - apply line based optimization across
several directions

7.8 Structure from motion

1. Find keypoint correspondences
2. estimate F (weak calibration)
3. get E from F and K1,K2

4. get [R|t]
5. triangluation

Normalized 8-point algorithm

1. Precondition with µ = 0 and σ =
√
2

2. Create homogeneous system using correspondences and epipo-
lar constraint

3. Minimize
∑N

i=1(x
T
i FX ′

i) and solve
4. Set last λ to 0 and reconstruct
5. Transform to original units F = T

′T F̃ T

Fundamental matrix estimation

1. Find keypoint and correspondences using proximity constraint
2. filter correspondences by visual similarity
3. apply RANSAC with 8-point algorithm and epipolar constraint

pruning
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7.9 Active stereo

Project light patterns over the object
Multi band triangulation: Assume smooth surface, project color
bands

8 Feature learning

8.1 Natural linear coordinate systems

Principal component analysis
Σ = 1

N

∑N
i=1(xi − µ)(xu − µ)T = 1

NXdX
T
d , Xd = X − µ

Maximize uTΣu → Σu = λu, solutions are U = eig. vectors of Σ.
Project data to PCA c.s. yi = UT (xi − µ)
Project data from PCA c.s. xi = Uyi + µ
Dual PCA
If sample dimension M > number of samples N
Σ′ = 1

NXT
d Xd

ui =
Xdu

′
i√

Nλ′
i

Classification by subspace recognition
If window contains a trained subspace the reconstruction will work
well. ∥x̃i − xi∥2 < θ
Linear discriminant analysis

SW =
∑c

i=1

∑
j(x

(i)
j − µi)(x

(i)
j − µi)

T

SB =
∑c

i=1 Ni(µi − µ)(µi − µ)T

Maximize J(w) = wTSbw
wTSww

→ S−1
w Sbw = λw, solutions are W = first

c− 1 eig. vectors of S−1
w Sbw.

8.2 Nonlinear hand-crafted transforms

Histogram of gradients
1. Calculate gradient
2. Calculate HOG in 8x8 blocks and normalize, weighted by mag-

nitude
3. Train a classifier using support vector machine

8.3 Feature selection

Viola-Jones face detection
Boosting (Adaboost)

� Strong classifier from many weak classifiers
h(x) = sign(

∑T
t=1 αtht(x)), classifier weight αt, weak classifier

ht(x)
� Weak classifiers using sum of region intensities with integral
images Σ(R) =

∫
⌜ +

∫
⌟ −

∫
⌞ −

∫
⌝

� Using cascade of classifiers to reject obvious windows
Region proposals for selective search
Can be used by slow classifiers, hierarchical segmentation

8.4 End-to-end feature & classifier learning

Convolutional neural networks
Feature extraction

� Convolutional layers
� Nonlinearity (RELU)
� Pooling layers
Classifier

� Multi-layer perceptron
Region based CNN evolution

� Slow R-CNN - processes every region proposal through the
whole CNN to classify

� Fast R-CNN - process whole image to extract features and join
with region proposals to classify

� Faster R-CNN - generate region proposals using extracted fea-
tures network, multi-scale feature extraction

� Mask R-CNN - Use box regression and additional MLP to cre-
ate the segmentation mask

9 Keypoint based recognition

9.1 Bag of words models

1. Feature detection and representation
Use SIFT and affine adaptation, collect all descriptors

2. Dictionary construction
Cluster descriptors into clusters (K-means) - cluster center is a
word

3. Image representation
Detect words in training images and build word histograms
(BOWs)

4. Build a classifier
Use histograms to make a classifier

5. Recognition
Extract BOWs and apply them to the classifier

9.2 Detection by RANSAC and GHT

Detection by RANSAC
1. Represent model using affine deformation invariant parts
2. Detect parts in image
3. Use RANSAC with parts and try to fit a good model

Generalized Hough transform
1. Index descriptors
2. Apply GHT to obtain detections, each feature casts a vote into

the Hough space
3. Refine detection using affine transform
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