TOC/FRI

1 Finite Automata

1.1 Deterministic finate automaton - DFA
is a 5-tuple (@, %, d, go, F') where:

e () is a finate set of states,

e Y is a finite input alphabet

® o € (Q is the initial state,

e [ C (Q is the set of final states, and

¢ is the transition function, ie. 0 :Q X X — Q

For each state, there must be a transition for every input sym-
bol out of X.

exp. Dfa for finding modulo of binary numbers
Suppose our modulo is m. Then for every possible remainder, there
must be a state in fa {qo,q1, ..., @m-11-

e state qo : mxk+0
mxk|0= 2% (5k) +0=m=k+0 (on 0, we go to go)
mxk|l=2%(5k)+1=mxk+1 (onl, we go to q1)
e state q1 : k+1
mxk|0=2%x14+0=2 (go to ¢2)
mxk|l=2%x1+1=3(go to q3)
o state g1 : k+ (m—1)
mxk|0=2%x(m—1)+0
mxk|l=2x(m—1)+1

If your remainder is bigger than m, then you must modulo it!
1.2 Nondeterministic finate automaton - NFA
is a 5-tuple (@, %, d, go, F') where:

e Q, %, qo, F read dfa

e ¢ is the transition function, i.e. § : Q x ¥ — 29
That is 6(q,a) is the set of all states p such that there is a
transition labeled from a to p.

1.3 NFA with epsilon moves - NF A,
is a 5-tuple (@, X, 0, qo, F') where:

e Q,%, qo, F read dfa

e § is the transition function, i.e. §:Q x (XU {e}) — 29
That is 6(q,a) is the set of all states p such that there is a
transition labeled from a to p, where a is either a symbol in %
or €.

e-closure defines which e transitions are allowed from a single state
in a fa (set of states we can reach).
exp. NFA for L¢
NFA(L)— DFA(L) — DFA(L®)
Due to the properties of DFA, the complementation is applied
just by switching final and non-final states of fa.

2 Regular expressions

2.1 Regular operations
Let L1, Ly be some regular languages. Then their

e union - L1 ULy ={Vz:x € Ly or x € Ly}
concatenation — L{.Lo = L1Ly

kleene closure —= L*

interscetion — L1 N Lo

complementation — L

are also regular languages. Regexp are equvalent with NFA.

2.2 Pumping lemma for regular languages Let R be a
class of regular languages. Then language L € R — dn > 0 :
Vze Lz >n:

Ju,v,w: |uv| < n, v > 1,2 =vwvow — Vi > 0: uwvw € L
if we negate lemma, we can prove that some languages are
irregular Yn > 0:3z € L,|z| > n
Vu,o,w: Juw| <ny vl >l z=uvw —Fi >0 wwg L=L¢R

3 Context-free grammars

3.1 Definition: A context-free grammar (CFG)
is a 4-tuple G = (V, T, P, S) where:

e V is a finite set of variables
e T is a finite set of terminals
e P is a finite set of productions
each of which is of the form A — a,
where A € V and « is a word in the language (V UT)*
e S is a special variable called the start symbol

Ambiguity: A CFG is said to be ambiguous if some word has more
than one derivation tree.
exp. regex to CFG conversion
Suppose we have a regex: a(ab)*bb(aa + b)*a
Then we could model a CFG for it as:

S — XYZUV
X —a

Y — abY|e

Z — bb

U — aaU|bUle
V—>a

3.2 Pumping lemma for context-free languages Let L be
a CFL.dn > 0:
Vze L, |z| >n:
Ju,v,w,z,y : Jowz| < n,jvz| >1
2z = wwzy — Vi > 0: wiwrly € L
if we negate lemma, we can prove that some languages are not
context-free. ¥Yn > 0 :
JzeL,|z|>n:
Yu,v,w,z,y : |vwz| < n,|vx| > 1
2 = wowzy — Ji > 0: wlwaly ¢ L

4 Pushdown Automata

4.1 Definition: A pushdown automaton (PDA)
isa 7 tuple M = (Q,%,T,0,qo, Zo, F') where:

Q, >, qo, F read dfa

T" is the stack alphabet

Zy € T is the start stack symbol, and

¢ is the transition function

i.e. a mapping from @ x (XU{e}) x T to finite subsets of @ x I'*
— 2@xT”

4.2 Accepted languages of the PDA
For PDA M = (Q,%,T,6,qo, Zo, F') we define two languages:

o L(M), the language accepted by final state, to be
L(M) = {w € X*|(q0, w, Zo) =" (p,€,7)
for somep € F and v € T'*}

o L(M), the language accepted by empty stack, to be
N(M) = {w € Z*|(qo, w, Zy) =* (p,€,¢€); for somep € Q}



4.3 The class of CFLs is closed under:
union, concatenation, kleene closure, substitution, inverse homomor-
phism
The class of CFLs is not closed under: interscetion, complementa-
tion.
But is closed for intersection if both CFL represent some regular sets.

5 Turing Machines

5.1 Definition: A basic Turing Machine (TM)
is a 7-tuple M = {Q, %, T, 0, qo, B, F'} where:

Q is a finite set of states

Y is the input alphabet

I" is the tape alphabet BeT => X CT
¢ is the transition function

qo is the initial state and,

F C Q: is the set of final states

TM accepts up to computably enumerable(c.e.) sets which are semi-
decidable.
5.2 TM modifications:

Finite storage = 6 : Q x [ x ¥ — Q x T' x {L, R, S} x T'*
Multiple track tape = § : Q x I''* — Q x I'** x {L, R, S}
Two-way infinite tape = §: Q@ xT' = Q@ x ' x {L, R, S}
Multiple tapes = 6 : Q x I''" — @Q x (I' x {L, R, S})*?
Multidimensional tape = § : Q@ x I' — @Q x I' x
{leRlv"dewRdaS}

5.3 Universal Turing Machine (UTM)
is a TM, that accepts some Turing machine M description and a
word w. The universal TM then decides if w € L(M).

[TM description|w] 111 < g1 > 11 < go > 11...11 < g > 111w

— language L is semi-decidable, if there exists a TM, which:
for every w € L, TM halts in a final state
— language L is decidable, if there exists a TM, which:
for every w € L, TM halts in a final state
for every w ¢ L, TM halts in a non-final state
— language L is undecidable, if it is not decidable.
5.4 Theorems for sets
Let S, A, B be arbitrary sets. Then:

S is decidable = S is semi-decidable

S is decidable = S is decidable

S and S are semi-decidable = S is decidable

A and B are semi-decidable = ANB & AUB are semi-decidable
A and B are decidable = AN B & AU B are decidable

5.5 Three possibilities for set complementation:

S and S are decidable
S and S are undecidable, one is semi, and the other is not.
e S and S are undecidable, and neither is semi-decidable.

5.6 Known languages:

Diagonalizable language — Lg ={< M > | < M >¢ L(M)} -
undecidable / not semi-decidable.

o Universal language — L, = {(< M >,w)|lw € L(M)} - semi-
decidable, but not decidable.

Empty language — L {< M > |L(M) = {}} - undecidable
Non-Empty language — Lpe = {< M > |L(M) # {}} - semi-
decidable, but not decidable.

5.6 Rice’s theorem for (not)semi-decidabilty:

1. LeSALCL =L'eS
2. Le SALinfinite=3L CL:LeS, L finite
3. innumerability of final sets in S

(1) A (2) A (3) & L,is semi-decidable

6 Complexity classes

6.1 In terms of formal languages:

e DTIME(T(n)) = {L| L is a language A L has time complexity
T(n))

e DSPACE(S(n)) = {L| L is a language A L has space complexity
S(n)}

e NTIME(T(n)) = {L| L is a language A L has nondet. time
complexity T(n)}

e NSPACE(S(n)) = {L| L is a language A L has nondet. space
complexity S(n)}

6.2 In terms of decision problems:

e DTIME(T(n)) = {D| D is a decision problem A L(D) has time
complexity T(n)}

e DSPACE(S(n)) = {D| D is a decision problem A L(D) has
space complexity S(n)}

e NTIME(T(n)) = {D| D is a decision problem A L(D) has non-
det. time complexity T(n)}

e NSPACE(S(n)) = {D| D is a decision problem A L(D) has
nondet. space complexity S(n)}

6.3 Relations between different complexity classes:

e DTIME(T(n)) C DSPACE(T(n)) i.e. What can be solved in time
O(T'(n)), can also be solved on space O(T(n))

e L € DSPACE(S(n)) AS(n) > logen = 3¢ : L € DTIME(c5™) ie.
What can be solved nondeterminstically in space O(S(n)), can be
solved deterministically in (at most) time O(c%™

e L € NTIME(T(n)) = 3¢ : L € DTIME(c"™) i.e What can be
solved nondeterminstically in time O(T'(n)), can be solved determin-
istically in (at most) time O(cT™)

Consequentely, the substitution of nondeterministic algorithm with
a deterministic one causes at most exponential increase in the time
required to (deterministically) solve a problem.

e NSPACE(S(n)) C DSPACE(S%*(n)), if S(n) > logan A S(n) is
7well behaved” i.e What can be solved nondeterminstically on space
0O(S(n)), can also be solved deterministically on space O(S%(n))
Consequentely, the substitution of nondeterministic algorithm with
a deterministic one causes at most quadratic increase in the space
required to (deterministically) solve a problem.

6.4 Define P, NP, PSPACE, NPSPACE:

o P =U;>1 DTIME(n’) is the class of all decision problems de-
terministically solvable in polynomial time.

e NP = U;>1 NTIME(n?) is the class of all decision problems
nondeterministically solvable in polynomial time.

o PSPACE = U;>1 DSPACE(n") is the class of all decision prob-
lems deterministically solvable on polynomial space.

e NPSPACE = U;>1 NSPACE(n') is the class of all decision
problems nondeterministically solvable on polynomial space.

6.5 Relations between P, NP, PSPACE, NPSPACE:
PCNPCPSPACE=NPSPACE
Proof:

e P C NP — Every deterministic TM of polynomial time com-
plexity can be viewed as a (trivial) nondeterministic TM of the
same complexity.

e NP C PSPACE — If L € NP, then dk such that L €
NTIME(n*). So L € NSPACE(n*), and hence L €
DSPACE(n?*). Therefore L € PSPACE.

e (PSPACE = NPSPACE) — Trivially, PSPACE C NPSPACE.
The opposite direction: NPSPACE = (def) = U NSPACE(n?) C (by
Savitch) C U DSPACE(n’) C PSPACE

6.6 NP-complete & NP-hard problems
NP-hard: D <P D* for every D € NP.
NP-complete: D* € NP A D <P D* for every D € NP.
Hence, D* is NP-complete if D* is in NP and D* is NP-hard.



