
TOC/FRI

1 Finite Automata

1.1 Deterministic finate automaton - DFA
is a 5-tuple (Q,Σ, δ, q0, F) where:

• Q is a finate set of states,

• Σ is a finite input alphabet

• q0 ∈ Q is the initial state,

• F ⊆ Q is the set of final states, and

• δ is the transition function, i.e. δ : Q× Σ → Q
For each state, there must be a transition for every input sym-
bol out of Σ.

exp. Dfa for finding modulo of binary numbers
Suppose our modulo is m. Then for every possible remainder, there
must be a state in fa {q0, q1, . . . , qm−1}.

• state q0 : m ∗ k + 0
m ∗ k |0 ⇒ 2 ∗ (5k) + 0 = m ∗ k + 0 (on 0, we go to q0)
m ∗ k |1 ⇒ 2 ∗ (5k) + 1 = m ∗ k + 1 (on 1, we go to q1)

• state q1 : k + 1
m ∗ k |0 ⇒ 2 ∗ 1 + 0 = 2 (go to q2)
m ∗ k |1 ⇒ 2 ∗ 1 + 1 = 3 (go to q3)

• state qm−1 : k + (m− 1)
m ∗ k |0 ⇒ 2 ∗ (m− 1) + 0
m ∗ k |1 ⇒ 2 ∗ (m− 1) + 1

If your remainder is bigger than m, then you must modulo it!

1.2 Nondeterministic finate automaton - NFA
is a 5-tuple (Q,Σ, δ, q0, F) where:

• Q,Σ, q0, F read dfa

• δ is the transition function, i.e. δ : Q× Σ → 2Q

That is δ(q, a) is the set of all states p such that there is a
transition labeled from a to p.

1.3 NFA with epsilon moves - NFAϵ

is a 5-tuple (Q,Σ, δ, q0, F) where:

• Q,Σ, q0, F read dfa

• δ is the transition function, i.e. δ : Q× (Σ ∪ {ϵ}) → 2Q

That is δ(q, a) is the set of all states p such that there is a
transition labeled from a to p, where a is either a symbol in Σ
or ϵ.

ϵ-closure defines which ϵ transitions are allowed from a single state
in a fa (set of states we can reach).

exp. NFA for Lc

NFA(L) → DFA(L) → DFA(Lc)

Due to the properties of DFA, the complementation is applied
just by switching final and non-final states of fa.

2 Regular expressions

2.1 Regular operations
Let L1, L2 be some regular languages. Then their

• union → L1 ∪ L2 = {∀x : x ∈ L1 or x ∈ L2}
• concatenation → L1.L2 = L1L2

• kleene closure →= L∗

• interscetion → L1 ∩ L2

• complementation → L

are also regular languages. Regexp are equvalent with NFA.
2.2 Pumping lemma for regular languages Let R be a

class of regular languages. Then language L ∈ R → ∃n > 0 :
∀z ∈ L, |z| ≥ n :

∃u, v, w : |uv| ≤ n, |v| ≥ 1, z = uvw → ∀i ≥ 0 : uviw ∈ L
if we negate lemma, we can prove that some languages are

irregular ∀n > 0 : ∃z ∈ L, |z| ≥ n
∀u, v, w : |uv| ≤ n, |v| ≥ 1, z = uvw → ∃i ≥ 0 : uviw /∈ L ⇒ L /∈ R

3 Context-free grammars

3.1 Definition: A context-free grammar (CFG)
is a 4-tuple G = (V, T, P, S) where:

• V is a finite set of variables
• T is a finite set of terminals
• P is a finite set of productions
each of which is of the form A → α,
where A ∈ V and α is a word in the language (V ∪ T)∗

• S is a special variable called the start symbol

Ambiguity: A CFG is said to be ambiguous if some word has more
than one derivation tree.

exp. regex to CFG conversion
Suppose we have a regex: a(ab)∗bb(aa+ b)∗a
Then we could model a CFG for it as:

• S → XY ZUV
• X → a
• Y → abY |ϵ
• Z → bb
• U → aaU |bU |ϵ
• V → a

3.2 Pumping lemma for context-free languages Let L be
a CFL. ∃n > 0 :
∀z ∈ L, |z| ≥ n :

∃u, v, w, x, y : |vwx| ≤ n, |vx| ≥ 1
z = uvwxy → ∀i ≥ 0 : uviwxiy ∈ L

if we negate lemma, we can prove that some languages are not
context-free. ∀n > 0 :

∃z ∈ L, |z| ≥ n :
∀u, v, w, x, y : |vwx| ≤ n, |vx| ≥ 1
z = uvwxy → ∃i ≥ 0 : uviwxiy /∈ L

4 Pushdown Automata

4.1 Definition: A pushdown automaton (PDA)
is a 7 tuple M = (Q,Σ,Γ, δ, q0, Z0, F) where:

• Q,Σ, q0, F read dfa
• Γ is the stack alphabet
• Z0 ∈ Γ is the start stack symbol, and
• δ is the transition function
i.e. a mapping from Q×(Σ∪{ϵ})×Γ to finite subsets of Q×Γ∗

→ 2Q×Γ∗

4.2 Accepted languages of the PDA
For PDA M = (Q,Σ,Γ, δ, q0, Z0, F) we define two languages:

• L(M), the language accepted by final state, to be
L(M) = {w ∈ Σ∗|(q0, w, Z0) →∗ (p, ϵ, γ)
for some p ∈ F and γ ∈ Γ∗}

• L(M), the language accepted by empty stack, to be
N(M) = {w ∈ Σ∗|(q0, w, Z0) →∗ (p, ϵ, ϵ); for some p ∈ Q}

1

4.3 The class of CFLs is closed under:
union, concatenation, kleene closure, substitution, inverse homomor-
phism
The class of CFLs is not closed under: interscetion, complementa-
tion.
But is closed for intersection if both CFL represent some regular sets.

5 Turing Machines

5.1 Definition: A basic Turing Machine (TM)
is a 7-tuple M = {Q,Σ,Γ, δ, q0, B, F} where:

• Q is a finite set of states
• Σ is the input alphabet
• Γ is the tape alphabet B ∈ Γ => Σ ⊆ Γ
• δ is the transition function
• q0 is the initial state and,
• F ⊆ Q: is the set of final states

TM accepts up to computably enumerable(c.e.) sets which are semi-
decidable.

5.2 TM modifications:

• Finite storage ⇒ δ : Q× Γ× Γk → Q× Γ× {L,R, S} × Γk

• Multiple track tape ⇒ δ : Q× Γtk → Q× Γtk × {L,R, S}
• Two-way infinite tape ⇒ δ : Q× Γ → Q× Γ× {L,R, S}
• Multiple tapes ⇒ δ : Q× Γtp → Q× (Γ× {L,R, S})tp
• Multidimensional tape ⇒ δ : Q × Γ → Q × Γ ×
{L1, R1, . . . , Ld, Rd, S}

5.3 Universal Turing Machine (UTM)
is a TM, that accepts some Turing machine M description and a
word w. The universal TM then decides if w ∈ L(M).

[TM description|w] 111 < q1 > 11 < q2 > 11 . . . 11 < qk > 111w

→ language L is semi-decidable, if there exists a TM, which:
for every w ∈ L, TM halts in a final state

→ language L is decidable, if there exists a TM, which:
for every w ∈ L, TM halts in a final state
for every w /∈ L, TM halts in a non-final state

→ language L is undecidable, if it is not decidable.
5.4 Theorems for sets

Let S, A, B be arbitrary sets. Then:

• S is decidable ⇒ S is semi-decidable
• S is decidable ⇒ S is decidable
• S and S are semi-decidable ⇒ S is decidable
• A and B are semi-decidable ⇒ A∩B & A∪B are semi-decidable
• A and B are decidable ⇒ A ∩B & A ∪B are decidable

5.5 Three possibilities for set complementation:

• S and S are decidable

• S and S are undecidable, one is semi, and the other is not.

• S and S are undecidable, and neither is semi-decidable.

5.6 Known languages:

• Diagonalizable language → Ld = {< M > | < M >/∈ L(M)} -
undecidable / not semi-decidable.

• Universal language → Lu = {(< M >,w)|w ∈ L(M)} - semi-
decidable, but not decidable.

• Empty language → Le{< M > |L(M) = {}} - undecidable

• Non-Empty language → Lne = {< M > |L(M) ̸= {}} - semi-
decidable, but not decidable.

5.6 Rice’s theorem for (not)semi-decidabilty:

1. L ∈ S ∧ L ⊆ L′ ⇒ L′ ∈ S
2. L ∈ S ∧ L infinite ⇒ ∃L′ ⊆ L : L ∈ S, L′ finite
3. innumerability of final sets in S

(1) ∧ (2) ∧ (3) ⇔ Lsis semi-decidable

6 Complexity classes

6.1 In terms of formal languages:

• DTIME(T (n)) = {L| L is a language ∧ L has time complexity
T(n)}

• DSPACE(S(n)) = {L| L is a language ∧ L has space complexity
S(n)}

• NTIME(T (n)) = {L| L is a language ∧ L has nondet. time
complexity T(n)}

• NSPACE(S(n)) = {L| L is a language ∧ L has nondet. space
complexity S(n)}

6.2 In terms of decision problems:

• DTIME(T (n)) = {D| D is a decision problem ∧ L(D) has time
complexity T(n)}

• DSPACE(S(n)) = {D| D is a decision problem ∧ L(D) has
space complexity S(n)}

• NTIME(T (n)) = {D| D is a decision problem ∧ L(D) has non-
det. time complexity T(n)}

• NSPACE(S(n)) = {D| D is a decision problem ∧ L(D) has
nondet. space complexity S(n)}

6.3 Relations between different complexity classes:

• DTIME(T (n)) ⊆ DSPACE(T (n)) i.e. What can be solved in time
O(T (n)), can also be solved on space O(T (n))

• L ∈ DSPACE(S(n)) ∧S(n) ≥ log2n ⇒ ∃c : L ∈ DTIME(cS(n)) i.e.
What can be solved nondeterminstically in space O(S(n)), can be
solved deterministically in (at most) time O(cS(n))

• L ∈ NTIME(T (n)) ⇒ ∃c : L ∈ DTIME(cT (n)) i.e What can be
solved nondeterminstically in time O(T (n)), can be solved determin-
istically in (at most) time O(cT (n))
Consequentely, the substitution of nondeterministic algorithm with
a deterministic one causes at most exponential increase in the time
required to (deterministically) solve a problem.

• NSPACE(S(n)) ⊆ DSPACE(S2(n)), if S(n) ≥ log2n ∧ S(n) is
”well behaved” i.e What can be solved nondeterminstically on space
O(S(n)), can also be solved deterministically on space O(S2(n))
Consequentely, the substitution of nondeterministic algorithm with
a deterministic one causes at most quadratic increase in the space
required to (deterministically) solve a problem.

6.4 Define P, NP, PSPACE, NPSPACE:

• P = ∪i≥1 DTIME(ni) is the class of all decision problems de-
terministically solvable in polynomial time.

• NP = ∪i≥1 NTIME(ni) is the class of all decision problems
nondeterministically solvable in polynomial time.

• PSPACE = ∪i≥1 DSPACE(ni) is the class of all decision prob-
lems deterministically solvable on polynomial space.

• NPSPACE = ∪i≥1 NSPACE(ni) is the class of all decision
problems nondeterministically solvable on polynomial space.

6.5 Relations between P, NP, PSPACE, NPSPACE:
P ⊆ NP ⊆ PSPACE = NPSPACE

Proof:

• P ⊆ NP → Every deterministic TM of polynomial time com-
plexity can be viewed as a (trivial) nondeterministic TM of the
same complexity.

• NP ⊆ PSPACE → If L ∈ NP , then ∃k such that L ∈
NTIME(nk). So L ∈ NSPACE(nk), and hence L ∈
DSPACE(n2k). Therefore L ∈ PSPACE.

• (PSPACE = NPSPACE) → Trivially, PSPACE ⊆ NPSPACE.
The opposite direction: NPSPACE = (def) = ∪ NSPACE(ni) ⊆ (by
Savitch) ⊆ ∪ DSPACE(nj) ⊆ PSPACE

6.6 NP-complete & NP-hard problems
NP-hard: D ≤p D∗, for every D ∈ NP .
NP-complete: D∗ ∈ NP ∧D ≤p D∗, for every D ∈ NP .
Hence, D∗ is NP-complete if D∗ is in NP and D∗ is NP-hard.

2

