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1 Linear Models

1.1 Types of errors
Errors come from: impercise data, mistakes in the model, computa-
tional percision,.. We know two types of errors:

• Absolute error = approximate value - correct value

∆x = x− x

• Relative error =
absolute err

correct value

δx =
∆x

x

1.2 Mathematical model is linear, when the function F is a linear
function of the parameters:

F (x, a1, . . . , ap) = a1φ1(x) + · · ·+ apφp(x)

where φ1, . . . , φp are functions of a specific type.
1.3 Least squares method Given points

{(x1, y1), . . . , (xm, ym)}, xi ∈ Rn, yi ∈ R

the task is to find a function F (x, a1, . . . , ap) that is good fit for the
data. The values of the parameters a1, . . . , ap should be chosen so
that the equations

yi = F (x, a1, . . . , ap), i = 1, . . . ,m

are satisified or, it this is not possible, that the error is as small as
possible.
We use Least squares method to determine that the sum od
squared errors is as small as possible.∑m

i=1(F (xi, a1, . . . , ap)− yi)2

1.4 Systems of linear equations
A system of linear equations in the matrix form is given by

A~x = ~b, where:

• A is the matrix of coefficients of order m × n where m is the
number of equations and n is the number of unknowns,

• ~x is the vector of unknowns and

• ~b is the right side vector
φ1(x1) φ2(x1) . . . φp(x1)
φ1(x2) φ2(x2) . . . φp(x2)

...
...

. . .
...

φ1(xn) φ2(xn) . . . φp(xn)



a1
a2
...
ap

 =


y1
y2
...
yp


1.5 Existance of solutions in linear equations

Let A = [ ~a1, . . . , ~an], where ~ai are vector representing the columns

of A. For any vector ~x =


y1
y2
...
yp

 the produdct A~x is a linear combina-

tion A~x =
∑
i xiai. The system is solvable iff the vector ~b can be

expressed as a linear combination of the columns of A, that is it is in
the column space of A, ~b ∈ C(A).

By adding ~b to the columns of A we obtain the extended matrix of
the system:

[A|~b] = [ ~a1, . . . , ~an|b]

The system A~x = ~b is solvable iff the rank of A equals the rank of
the extended matrix [A|~b], i.e.:

rankA = rank[A|~b] =: r

The solution is unique if the rank of the two matrices equals num of
unknowns (r = n).

1.6 Properties of squared matrices
Let A ∈ Rn×n be a square matrix. The following conditions are
equivalent and characterize when a matrix A is invertible or non-
singular:

• The matrix A has an inverse

• rank A = n

• det(A) 6= 0

• The null space N(A) = {~x : A~x = 0 is trivial

• All eigenvalues of A are nonzero

• For each ~b the system of equations A~x = ~b has perciesly one
solution

1.7 Generalized inverse of a matrix A ∈ Rn×m is a matrix
G ∈ Rm×n such that

AGA = A

Let G be a generalized inverse of A. Multiplying AGA = A with A−1

from the left and the right side we obtain:
LHS: A−1GAA−1 = IGI = G
RHS: A−1AA−1 = IA−1 = A−1

where I is the identity matrix. The equality LHS=RHS implies that
G = A−1.
Every matrix A ∈ Rn×m has a generalized inverse. When computing
a generalized inverse we come across two cases:

1. rank A = rank A11 where

A =

[
A11 A12

A21 A22

]
And A11 ∈ Rr×r, A12 ∈ Rr×(m−r), A21 ∈ R(n−r)×r, A22 ∈
R(n−r)×(m−r). We claim that

G =

[
A−111 0

0 0

]
where 0s denote zero matrices of appropriate sizes, is the gen-
eralized inverse of A.

2. The upper left r × r submatrix of A is not invertible.
One way to hanlde this case is to use permutation matrices P
and Q, such that

PAQ =

[
Ã11 Ã12

Ã21 Ã22

]
,

Ã11 ∈ Rr×r and rank Ã11 = r. By case 1 generalized inverse of
PAQ equals to

(PAQ)g =

[
˜A−111 0
0 0

]

Thus (PAQ)(PAQ)g(PAQ) = PAQ holds, Multiplying from
the left by P−1 and from the right by Q−1 we get:
A(Q(PAQ)gP )A = A
So

Q(PAQ)gP
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is a generalized inverse of A.

Algorithm for computing Ag:

1. Find any nonsingular submatrix B in A of order r × r,

2. in A substitute

• elements of submatrix B for corresponding elements of
(B−1)T ,

• all other elements with 0

3. the transpose of the obtained matrix is generalized inverse G

solutions:
Let A ∈ Rn×m and ~b ∈ Rm. If the system A~x = ~b is solvable (that

is, ~b ∈ C(A)) and G is a generalized inverse of A, then ~x = G~b is a
solution of the system. Moreover, all solutions of system are exactly
vectors of the form

xz = G~b+ (GA− I)z

1.8 The Moore-Penrose generalized inverse
The MP inverse of A ∈ Rn×m is any matrix A+ ∈ Rn×m satisfying
the following four conditions:

1. A+ is a generalized inverse of A: AA+A = A

2. A is a generalized inverse of A+ : A+AA+ = A+

3. The square matrix AA+ ∈ Rn×n is symetric: (AA+)T = AA+

4. The square matrix A+A ∈ Rm×m is symetric: (A+A)T = A+A

Properties:

• If A is a square invertible matrix, then it A+ = A−1

• ((A+))+ = A

• (AT )+ = (A+)T

Construction of the MP inverse (4 cases):

1. ATA ∈ Rm×m is an invertible matrix (m ≤ n)

A+ = (ATA)−1AT

2. AAT is an invertible matrix (n ≤ m)

A+ = AT (AAT )−1

3. Σ ∈ Rn×m is diagonal matrix of the form

Σ =

σ1 . . .

σn


Then the MP inverse is:

Σ =

σ
+
1

. . .

σ+
n



where σ+
i =

{
1
σi

σi 6= 0

0 σi = 0

4. a general matrix A (using SVD)

A+ = V Σ+UT

1.9 SVD computation

1. Compute the eigenvalues and an orthonormal basis consistiong
of eigenvectors of the symetric matrix ATA or AAT (depending
on which of them is of smaller size)

2. the singular values of the matrix A ∈ Rn×m are equal to
σi =

√
λi

3. the left singular vectors are the corresponding orthonormal
eigenvectors of AAT

4. the right singular vectors are the corresponding orthonormal
eigenvectors of ATA

5. If u (resp. v) is a left (resp. right) singular vector correspond-
ing to the singular value σi, then v = Au (resp. u = AT v)
is a right (resp left) singular vector corresponding to the same
singular value

6. the remaining columns of U (resp. V) consist of an orthonor-
mal basis of the kernel (i.e., the eigenspace of λ = 0) of AAT

(resp. ATA)

1.10 General computation of A+

1. For ATA compute its nonzero eigenvalues λ1 ≥ · · · ≥ λr > 0,
and the corresponding orthonormal eigenvectors v1, . . . , vr, and
form the matrices:

S = diag(
√
λ1, . . . ,

√
λr) ∈ Rr×r V = [v1 . . . vr] ∈ Rm×r

2. Put the vectors

u1 =
Av1
σ1

, . . . , ur =
Avr
σr

in the matrix U = [u1, . . . , ur]

3. Then A+ = V Σ+UT

1.11 Undetermined systems
Let A ∈ Rn×m, where m > n. A system of equiations that has more
variables than constraints. Typically such system has infinitely many
solutions, but it may happen that it has no solutions → such system
is undetermined.

1. An undetermined system of linear equations Ax = b is solvable
iff AA+b = b.

2. If there are infinitely many solutions, the solution A+b is the
one with the smallest norm, i.e

||A+b|| = min{||x|| : Ax = b}

Moreover, it is the unique solution of smallest norm.

1.12 Overdetermined systems
Let A ∈ Rn×m, where n > m. A system of equations that has more
constraints than variables. Typically such system has no soluitons,
but it may happen that it migh have one or even infinitely many
solutions.
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2 Nonlinear Models

2.1 Definition
Given is a sample of data points {(x1, y1), . . . , (xm, ym)} ∈ Rn × R.
We are searching for

F : Rn ×Rp → R,
F (xi, ai, ..., ap) = yi,

i = 1, ...,m

which can be nonlinear in parameters ai, . . . , ap. Examples: expo-
nential decay/growth, Gaussian model, logistic model,...

We introduce a vector function

G : Rp → Rm, G = (g1, ..., gm)
g1(a1, .., ap) = F (x1, a1, ...ap)− y1

...
gm(a1, .., ap) = F (xm, a1, ...ap)− ym

Solving F (xi, ai, ..., ap) = yi, is equivalent to solving
G(a1, .., ap) = (0, ..., 0). Newton’s method will solve the latter sys-
tem.

2.2 Rate of convergence
Let us say that ei is the i-th error of some method and α is a zero
we are searching for. We can show that |ei+1| ≤ C · 12 |ei|

r, where
C ∈ R > 0 and r ∈ N . r is the rate of convergence of the method.

2.3 Case 1 for solving nonlinear equations (p = m = 1)
g : R→ R. We have to find a zero of the function g (let’s call it α).

2.3.1 Tangent method

1. Select an initial approximation x0.

2. Iterate xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, ... until it converges to α

Problem: the convergence of this method really needs a good ini-
tial approximation. Theorem: The sequence xi from the tangent
method converges with the rate r = 2 if:

• f ′(α) 6= 0

• x0 was close enough to α

2.3.2 Bisection

1. Start with x0, x1 such that f(x0)f(x1) < 0.

2. Compute x2 =
x0 + x1

2
.

3. Choose [x0, x2] if f(x0)f(x2) < 0, otherwise choose [x2, x1].

4. Repeat.

Bisection always converges, but it is slow. Rate of convergence: We

can show that |ei+1| ≈ 1
2 |ei|. From here we can see that bisection

has a linear rate of convergence.

2.3.3 Stopping criteria
Iterative method: x0, ..., xn, xn + 1. How do we find n (how many
steps of a method do we have to make)? This has to be true:

•
|xn+1 − xn|
|xn|

< tolerance

• |f(xn+1)| < tolerance

Tolerance is usually 10−10.
2.4 Case 2 for solving nonlinear equations (n = p > 1)

F : Rn → Rn. We have to find a zero of the function g (let’s call it
α ∈ Rn). In this case we have a vector function of a vector variable.

F =

F1

...
Fn

 , Fi : Rn → R

2.4.1 Newton’s method
x(m+1) = xm − JF−1(x(m))F (x(m)) (*) Where xm, x(m+1) ∈ Rn

are some approximations of α and JF is the Jacobi matrix of F:

JF (xm) =

gradF1

...
gradFn

 =


∂F1

∂x1
. . . ∂F1

∂xn

...
. . .

...
∂Fn

∂x1
. . . ∂Fn

∂xn


We multiply (*) by JF (xm) and solve this instead: x(m+1) =
∆xm + xm

2.4.2 Newton’s or Tangent method
We construct a recursive sequence with: x0 is an initial term

xn+1 = xn −
f(xn)

f ′(xn)

2.4.x Broyden’s bethod It approximates JF (x(m)) with some
matrix Bbn where:

slope ≈ f ′(x1)
f(x2)− f(x1)

x2 − x1
≈ f(x1)

f(x2)− f(x1) ≈ f ′(x)(x2 − x1)

Where < f(x2) − f(x1) > is a vector, < f(x1) > is a n × n matrix
Bn, and < (x2 − x1) > a vector.

2.4.x Conclusion

1. Use Broyden’s method first

2. If it doesn’t converge, go and compute derivatives for Newtons
method.

(a) Do a few steps of gradient descent(GD)

(b) Use the final approximate of GD as entry into Newton’s
method

3 Curves
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