
MLDS1/FRI

1 ML tasks

1.1 a) Supervised learning

The dataset is a collection of labeled data points:

D = {(x⃗i, yi)}i=1,...,n

The components are often referred to by different names:

Goal: Learn the conditional probability distribution p(y|x⃗). Y
can be univariate or multivariate.

1.1.1 Classification

The output variable y is nominal (categorical).

1.1.2 Regression

The output variable y is numeric.

1.2 b) Unsupervised learning

Here we have no labels, just data points x⃗i. The goal is to learn
the underlying structure of the data.

Goal: Learn p(y⃗).

1.2.1 Dimensionality reduction

Examples of algorithms include PCA, MDS, t-SNE, UMAP, etc.

1.3 c) Semi-supervised learning

This approach uses a combination of labeled and unlabeled data.
Using the unlabeled data can help identify better decision bound-
aries than using the labeled data alone.

1.4 d) Reinforcement learning

Key concepts include:

• Delayed reward

• Exploration vs. exploitation trade-off

2 Models

2.1 a) Language/model class H
A model is a set of hypotheses h ∈ H. This represents our assump-
tions about the Data Generating Process (DGP).

2.2 b) Learning (fitting/training)

This is the process of expressing a preference for a hypothesis h
from the model class H. The result can be:

• A single element h

• A set of elements

• A distribution over all elements (Bayesian approach)

2.3 Bad examples of models

• The set of all possible models: Leads to overfitting.

• Memorization: Return y if there is an exact match for x,
otherwise fail. This is useless for new data.

• Assuming a linear relationship: This might not be true
for the underlying data.

2.4 Parametric vs. Non-parametric learning

3 K-Nearest Neighbours (k-NN)

The core assumption is that similar points have similar labels. For
a new data point, k-NN finds the ’k’ closest points in the training
data.

• Classification: The prediction is the majority class among
the k neighbors.

• Regression: The prediction is the average of the values of
the k neighbors.

Weights can be added based on distance, so that closer neigh-
bors have more influence on the prediction.

3.1 Distance Metrics

• Euclidean: Standard distance between two points. The for-
mula is given by:

∥x− y∥2 =

√√√√ n∑
i=1

(xi − yi)2

• Cosine: Measures the cosine of the angle between two non-
zero vectors. Cosine similarity is calculated as:

cos(θ) =
A ·B
∥A∥∥B∥

=

∑n
i=1 AiBi√∑n

i=1 A
2
i

√∑n
i=1 B

2
i

Cosine distance is then typically defined as 1− cos(θ).

• Jaccard: Used for comparing sets.

4 Curse of dimensionality

In high-dimensional spaces, Euclidean distance can become mean-
ingless. As the number of dimensions (d) increases, the volume of
the space grows exponentially. This causes data points to become
sparse and far apart from each other.

Consider a hypercube. To capture a fixed fraction of the data,
say a = 0.5, the required side length of the hypercube, r = d

√
a,

approaches 1 as the dimension d increases.

• In 1 dimension, to capture 50% of the data, you need to cover
50% of the length (r = 0.5).

• In 2 dimensions, you need a square with side length r =√
0.5 ≈ 0.71.

• In high dimensions, the hypercube must cover almost the en-
tire range in each dimension to capture the same fraction of
data.

The result is that in high dimensions, nearly all data points are
near the ”edges” of the space, making the concept of ”closeness”
less useful. This negatively affects distance-based algorithms like
k-NN.

5 Bayes Optimal Classifier

If we know the true data generating process p(y|x), the optimal
classifier h∗(x) is the one that picks the most likely class for a given
input x.

h∗(x) = argmax
y

p(y|x)

The error of this classifier is the Bayes error rate:

ϵOPT = P (y ̸= h∗(x)) = 1− p(y = h∗(x)|x)

1

5.1 1-NN vs Bayes Optimal

For n→∞, the error of the 1-NN classifier is bounded by twice the
Bayes optimal error rate. For a two-class problem, with y∗ being
the optimal class label:

ϵ1NN ≤ 2ϵOPT

The derivation from the lecture notes shows:

ϵ1NN = (1− p(y∗|x))p(y∗|x) + p(y∗|x)(1− p(y∗|x))

≤ 2(1− p(y∗|x)) = 2ϵOPT

6 Linear Regression

The goal of linear regression is to model the relationship between
a dependent variable y and one or more independent variables x.
The model takes the form of a linear equation:

ŷ = β0 + β1x1 + β2x2 + · · ·

where ŷ is the predicted value.
The core assumption is that the observed value y is the pre-

dicted value ŷ plus some normally distributed error term ϵ. This
can be expressed as a conditional probability:

p(y|x;β, σ2) = N (ŷ(x, β), σ2)

6.1 Maximum Likelihood Estimation (MLE)

Given a dataset, we want to find the parameters β that are most
likely to have produced the observed data. We do this using Maxi-
mum Likelihood Estimation. The error (or residual) for each data
point is e = y− ŷ. Assuming the errors are independent and identi-
cally distributed according to a normal distribution, the probability
density of an error is:

p(e) =
1

σ
√
2π

exp

(
− e2

2σ2

)
Maximizing the likelihood of the data is equivalent to minimizing
the sum of the squared errors.

6.2 Assumptions

• The relationship between y and x is linear, with additive
noise.

• The independent variables xi are constants, measured with-
out error.

• The error term e is normally distributed.

• The error term e is independent of x (homoscedasticity, or
constant variance).

6.3 Finding the optimal β

To find the optimal parameters β, we want to maximize the log-
likelihood of our data. The likelihood is the product of the proba-
bilities of each individual data point:

L(β) = p(y|X,β) =

n∏
i=1

p(yi|x⃗i, β)

It is easier to work with the log-likelihood, l(β) = logL(β). Taking
the log converts the product into a sum:

l(β) =

n∑
i=1

log

(
1

σ
√
2π

)
− 1

2σ2

n∑
i=1

(yi − ŷi)
2

To maximize l(β), we need to minimize the sum of squared errors
(SSE), also known as the cost function J(β):

J(β) =

n∑
i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − βT x⃗i)
2

There are two main approaches to find the β that minimizes
this function.

6.3.1 a) Gradient Descent

Gradient descent is an iterative optimization algorithm that finds
the minimum of a function. We start with an initial guess for β
and repeatedly move in the opposite direction of the gradient of
the cost function. The update rule for each parameter βj is:

βj ← βj − α
∂

∂βj
J(β)

where α is the learning rate. The partial derivative is:

∂

∂βj
J(β) =

∂

∂βj
(ŷ(β)− y)2 = 2(ŷ(β)− y) · xj

• Stochastic Gradient Descent (SGD): The parameters are
updated using only one data instance at a time.

βj ← βj − α(ŷ(β)− y)xj

• Batch Gradient Descent: The parameters are updated us-
ing the entire dataset. The update rule averages the gradients
over all N instances.

βj ← βj − α
1

N

N∑
i=1

(ŷi − yi)xij

6.3.2 b) Closed-Form Solution (Normal Equation)

For linear regression, a direct closed-form solution exists. The cost
function in matrix form is:

J(β) = (y −Xβ)T (y −Xβ)

We can find the minimum by taking the derivative with respect to
β and setting it to zero:

∂J(β)

∂β
= −2XT (y −Xβ) = 0

Solving for β gives the normal equation:

β̂ = (XTX)−1XTy

This solution gives the global minimum directly. However, this
method requires computing the inverse of the matrix XTX, which
is not always possible. This matrix is non-invertible if there is mul-
ticollinearity (i.e., features are linearly dependent) or if the number
of features is greater than the number of data instances.

7 Trees and Forests

7.1 Decision Trees (CART)

Classification and Regression Trees (CART) work by recursively
partitioning the input space into rectangular regions using axis-
parallel splits. The goal is to create regions that are as ”pure” as
possible.

2

7.1.1 Splitting Criteria

To find the best split at each node, we want to maximize the infor-
mation gain, which is the reduction in impurity after the split.

• Regression: The impurity is typically the variance of the
target variable within the node. The goal is to minimize the
weighted average variance of the child nodes.

Gain = var(D)−
(
|DL|
|D|

var(DL) +
|DR|
|D|

var(DR)

)
• Classification: Impurity measures how mixed the classes are
in a node. Common measures are:

– Gini Impurity: G(p) =
∑

c pc(1− pc) = 1−
∑

c p
2
c .

– Entropy: H(p) = −
∑

c pc log2(pc).

Once the tree is grown, predictions are made by taking the mean
(for regression) or the majority class (for classification) of the train-
ing instances in the leaf node where the new data point falls.

7.1.2 Challenges with Decision Trees

• Instability: Small changes in the training data can result in
a completely different tree structure.

• Stopping criteria: Deciding when to stop splitting (e.g.,
maximum depth, minimum samples per leaf) is crucial to
avoid overfitting.

• Interpretability: While small trees are interpretable, large
trees are not.

• Assumptions: They can model non-linear relationships but
struggle with simple additive structures.

8 Bagging (Bootstrap Aggregating)

Bagging is an ensemble technique designed to improve the stabil-
ity and accuracy of machine learning algorithms like decision trees.
The process is as follows:

1. Create multiple bootstrap samples from the original dataset
by sampling with replacement.

2. Train a separate model on each bootstrap sample.

3. The final prediction is the average (for regression) or a ma-
jority vote (for classification) of all the individual models’
predictions.

Bagging helps to reduce the variance of a model and lowers the in-
fluence of outliers. A useful feature is the Out-of-Bag (OOB) error,
where the data points not selected in a bootstrap sample are used to
evaluate the model, removing the need for a separate validation set.
However, bagging is most effective for unstable models; it provides
little benefit for stable models.

9 Random Forest

A Random Forest is an enhancement of bagging that specifically
uses decision trees as the base models. It adds an extra layer of
randomness to further de-correlate the trees. In addition to the
bootstrap sampling of data points, a Random Forest also samples a
random subset of features at each split in the tree-building process.

• Includes: Bootstrap sampling (like bagging) and random
feature selection for each split.

• Benefits: The added randomness makes the trees less corre-
lated with each other, which generally leads to a more robust
and accurate model.

• Properties: Random forests are generally fast to train (as
each split considers fewer features) and are considered a very
strong baseline model for many prediction tasks.

10 Variance of Averaged Random Vari-
ables

The variance of an average of random variables depends on their
correlation.

• Independent and Identically Distributed (IID): For n
IID random variables xi each with variance σ2, the variance
of their average x̄ is:

Var(x̄) = Var

(
1

n

n∑
i=1

xi

)
=

1

n2

n∑
i=1

Var(xi) =
1

n2
nσ2 =

σ2

n

As the number of variables n increases, the variance of the av-
erage approaches zero. This is the principle behind bagging.

• Correlated Variables: If the variables are not independent
but have an average pairwise correlation ρ, the variance of
the average is:

Var(x̄) = ρσ2 +
1− ρ

n
σ2

If ρ > 0, the variance does not go to zero as n → ∞. It is
lower-bounded by ρσ2. This highlights a limitation of bagging
where models (trees) can be correlated.

11 Model Evaluation

Model evaluation is a critical part of the machine learning work-
flow. It is unavoidable and can be costly, but it serves as a crucial
protection against issues like overfitting by providing feedback on
how a model will perform on unseen data. Common mistakes in
model evaluation include:

• Answering the wrong question.

• Optimizing for the wrong metric.

• Using an inappropriate model for the data.

• Employing a flawed evaluation procedure, such as not ac-
counting for temporal dependencies in data.

• Re-inventing the wheel with custom inference when standard
procedures exist.

It’s good practice to build a reusable evaluation ”harness” that
can be applied to multiple models. This ensures that models are
compared fairly under the same conditions and allows for tracking
improvements from incremental changes. A critical rule is to en-
sure that any pre-processing or post-processing steps are part of the
model itself, not the evaluation harness. Otherwise, a saved model
will be incomplete and perform poorly in production.

11.1 Bias-Variance Decomposition

The expected squared error of a model can be decomposed into bias
and variance.

ED[(ŷ − y)2] = (E[ŷ]− y)2︸ ︷︷ ︸
Bias2

+E[(E[ŷ]− ŷ)2]︸ ︷︷ ︸
Variance

• Bias: A measure of systematic error; how far the average
prediction is from the true value. High bias (underfitting)
occurs when a model is too simple. To combat this, one can
increase the number of features or use more complex models.

• Variance: A measure of how much a model’s prediction
changes for different training sets. High variance (overfitting)
occurs when a model is too complex and captures noise in the
training data. To reduce variance, one can use regularization,
add more training data, or use techniques like bagging.

There is a fundamental trade-off between bias and variance: de-
creasing one often increases the other.

3

12 Measures of Predictive Performance

The choice of performance measure depends on the machine learn-
ing task.

• Classification: Accuracy, precision, recall, F1-score, AUC.

• Regression: Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), absolute error, R2.

• Predictive Probability Distributions: Log-likelihood
(cross-entropy), quadratic score (Brier score).

13 Learning Paradigms

13.1 Empirical Risk Minimization (ERM)

ERM is a foundational principle in machine learning. It involves
defining a loss function l(true,predicted) and finding a model h
from a hypothesis class H that minimizes the average loss over the
training data.

The true risk (or generalization error) is the expected loss over
the true data distribution, which is unknown:

R(h) = Exy[l(y, h(x))]

The empirical risk is the average loss on the training set:

Rn(h) =
1

n

n∑
i=1

l(yi, h(xi))

The ERM principle states that we should choose the hypothesis ĥ
that minimizes the empirical risk:

ĥ = argmin
h∈H

Rn(h)

The optimal predictor depends on the chosen loss function:

• Quadratic Loss (l(y, ŷ) = (y − ŷ)2): The predictor that
minimizes this loss is the mean.

• Absolute Loss (l(y, ŷ) = |y − ŷ|): The optimal predictor is
the median.

• 0-1 Loss (l(y, ŷ) = I(y ̸= ŷ)): The optimal predictor is the
mode (majority class).

• Log Loss (l(y, p̂) = − log p̂(y)): The optimal predictor is the
relative frequencies of the classes.

13.1.1 ERM with Log Loss is equivalent to MLE

For a parametric model p(y|θ), using ERM with log loss means we
want to find:

θ̂ERM = argmin
θ

[
− 1

n

n∑
i=1

log p(yi|θ)

]

This is equivalent to maximizing the term inside the brackets:

θ̂ERM = argmax
θ

[
1

n

n∑
i=1

log p(yi|θ)

]

Since 1
n and log are monotonic, this is the same as maximizing the

likelihood:

θ̂ERM = argmax
θ

[
log

n∏
i=1

p(yi|θ)

]
= argmax

θ

[
n∏

i=1

p(yi|θ)

]
= θ̂MLE

Thus, minimizing the empirical risk under log-loss is the same as
finding the maximum likelihood estimate.

13.2 Approximation-Estimation Decomposition

The excess generalization error of a learned model ĥn can be de-
composed:

R(ĥn)−R(h∗) = (R(hopt)−R(h∗))︸ ︷︷ ︸
Approximation Error

+(R(ĥn)−R(hopt))︸ ︷︷ ︸
Estimation Error

• Approximation Error: How close the best possible model
in our hypothesis class (hopt) is to the true best model (h∗).
This is related to bias. A simple model like linear regression
might have high approximation error if the true relationship
is non-linear.

• Estimation Error: How close our learned model (ĥn) is
to the best model in its class (hopt). This error arises from
having a finite amount of data. It is related to variance. A
complex model like a deep neural network might have low ap-
proximation error but high estimation error, meaning it might
not generalize well.

13.3 Consistency of ERM

Consistency is a desirable property of an estimator. For ERM, we
consider two types of convergence as the sample size n→∞:

• The empirical risk of a fixed hypothesis h converges to its true
risk: Rn(h)→ R(h).

• The true risk of the hypothesis ĥn selected by ERM con-
verges to the true risk of the best hypothesis in the class:
R(ĥn)→ R(hopt).

This means that with enough data, ERM will select a model that is
nearly as good as the best possible model within the chosen class.
Generalization error bounds provide a more formal statement, often
relating the true risk to the empirical risk via a complexity term.

13.4 Structural Risk Minimization (SRM)

SRM extends ERM by adding a penalty term for model complexity.
This is a form of regularization.

ĥ = argmin
h∈H

(Rn(h) + λC(h))

Here, C(h) is a measure of the complexity of the model h (e.g.,
related to its VC-dimension), and λ is a regularization parameter
that controls the trade-off between fitting the data and keeping the
model simple. This approach aims to minimize an upper bound on
the true risk, not just the empirical risk.

13.5 Vapnik-Chervonenkis (VC) Dimension

The VC-dimension of a hypothesis class H, denoted V C(H), is a
measure of its capacity or complexity. It is defined as the size of
the largest set of points that can be ”shattered” by H, meaning
it can perfectly classify the points for every possible labeling. For
example, the VC-dimension of linear classifiers in 2D is 3.

14 Choosing a Loss Function

The choice of loss function is a critical modeling decision.

• If possible, do not train a model with one loss function and
evaluate it with another.

• Understand the consequences of your chosen loss function.

• When in doubt, using Log Loss (equivalent to MLE) is often
a principled and robust choice.

4

15 Scoring Rules

When evaluating probabilistic forecasts, we need a way to measure
how good a predicted probability distribution is, given an observed
outcome. This is the role of a scoring rule. A scoring rule S(p, y)
assigns a score to a predicted distribution p when the outcome y is
observed.

We want to maximize this score. Here are some examples:

• Logarithmic Score (Log Loss): Slog(p, y) = log p(y)

• Quadratic (Brier) Score: Squad(p, y) = 2p(y)−
∑

i p(yi)
2.

This is an alternative formulation to the more common loss
version, which is Lquad(p, y) =

∑
i(p(yi) − δiy)

2 where δiy is
1 if yi is the true class and 0 otherwise.

• 0-1 Score: S0−1(p, y) = 1 if y = mode(p), and 0 otherwise.
This rule only cares if the most likely predicted outcome was
correct.

15.1 Proper Scoring Rules

A key concept for scoring rules is whether they are proper. A scoring
rule is considered proper if a forecaster maximizes their expected
score by reporting their true belief about the distribution. A rule is
strictly proper if the true distribution is the unique distribution
that maximizes the expected score.

15.1.1 Why This Matters

Using a non-proper scoring rule can lead to paradoxical situations.
A model might achieve a better score by reporting a distribution
different from what it has actually learned. For instance, if the true
distribution for three classes is p = [0.6, 0.2, 0.2], a model predicting
this distribution should be rewarded most highly. However, with a
non-proper rule, it might be possible to get a better score by pre-
dicting a biased distribution, like [1, 0, 0]. This means the scoring
rule is not incentivizing honesty.

15.1.2 Examples of Scoring Rules

• Log Score: This is a strictly proper scoring rule. It heav-
ily penalizes a model for assigning a very low probability to
an event that then occurs (since log(p) → −∞ as p → 0).
Because it is strictly proper, it is a very reliable metric for
comparing probabilistic models.

• Quadratic (Brier) Score: This is also a strictly proper
scoring rule. It is less sensitive to extreme errors than the log
score.

• 0-1 Score (Accuracy): This rule is not proper. Mul-
tiple different probability distributions can yield the same
mode, and thus the same score. It doesn’t differentiate be-
tween a model that predicts [0.51, 0.49] and one that predicts
[0.99, 0.01] if the first class is correct.

• Absolute Error and MSE (for the mean): These are
also not proper for evaluating full distributions, as they only
depend on the mean of the distribution, not its full shape.

16 Estimating Generalization Error
(Risk)

The ultimate goal of a model is to perform well on new, unseen
data from the Data Generating Process (DGP). The model’s per-
formance on this future data is its generalization error or risk.
Since the DGP is unknown, we cannot calculate this error directly.
Instead, we must estimate it using the finite data we have.

This is analogous to estimating a population parameter, like
the mean θ = E[x], using a sample statistic, like the sample mean

θ̂ = x̄. We want our estimate of the risk to be unbiased and have
low variance.

We have a learning algorithm A which takes a dataset Dn of
size n and produces a hypothesis (a trained model) hn. We want
to estimate the true risk of this model:

R(hn) = Exy∼DGP[l(y, hn(x))]

16.1 Methods for Estimating Risk

16.1.1 1. Independent Test Set (Hold-out Estimation)

The conceptually simplest method is to acquire a new, large, inde-
pendent test set D′

m′ from the same DGP. We can then calculate
the empirical risk on this test set:

R̂(hn) =
1

m′

∑
(xi,yi)∈D′

m′

l(yi, hn(xi))

This estimate is an unbiased estimator of the true risk R(hn).
In practice, we rarely have the luxury of acquiring a separate

test set. Instead, we split our available data Dn into a training set
Dtrain and a test set Dtest. We train the model on Dtrain to get
htrain and then estimate its risk on Dtest:

R̂(htrain) =
1

|Dtest|
∑

(xi,yi)∈Dtest

l(yi, htrain(xi))

This estimate is an unbiased estimate of the risk of htrain, but it
is a pessimistic estimate of the risk of the final model hn (which
would be trained on all of Dn). This is because htrain was trained
on less data than hn and is therefore expected to perform worse.

Another common mistake is to evaluate the model on the same
data it was trained on. This gives the training error, which is an
optimistically biased (i.e., too low) estimate of the true risk.

16.1.2 Estimating the Uncertainty of the Risk Estimate

A single risk estimate, like 83% accuracy, is just a point estimate.
We also need to know the uncertainty of this estimate. The risk
estimate R̂ is an average of the losses li over the test set. By the
Central Limit Theorem (CLT), we can approximate its variance:

σ2
R̂
≈ σ2

l

mtest

Since we don’t know the true variance of the losses σ2
l , we estimate

it from the test sample itself:

σ̂2
l =

1

mtest − 1

mtest∑
i=1

(li − l̄)2

The standard error of our risk estimate is then SE(R̂) =
√
σ̂2
l /mtest.

The problem is that to get a low-variance (i.e., reliable) estimate,
we need a large test set (mtest), which leaves less data for training
a good model.

16.1.3 2. Cross-Validation (CV)

When data is limited, holding out a large portion for testing is
wasteful. Cross-validation is a resampling method that uses the
data more efficiently to get a more reliable estimate of generaliza-
tion error.

• k-Fold Cross-Validation: The data is partitioned into k
equal-sized folds. For each fold, the model is trained on the
other k − 1 folds and tested on the held-out fold. The CV
estimate of the risk is the average of the risks from the k test
folds.

• Leave-One-Out CV (LOOCV): This is the extreme case
of k-fold CV where k = n, the number of data points. It
provides a nearly unbiased estimate of the risk but can be
computationally very expensive and the resulting estimator
can have high variance.

5

• Monte Carlo CV (Repeated Random Sub-sampling):
This involves creating many random splits of the data into
training and testing sets and averaging the results. Unlike
k-fold CV, the test sets can overlap.

16.1.4 Practical Considerations for CV

• Stratified CV: When dealing with classification problems,
especially with imbalanced classes, it is important to ensure
that each fold has the same class distribution as the origi-
nal dataset. This is called stratification and helps to reduce
variance in the risk estimate.

• Nested CV: This is a more advanced technique used when
model selection (e.g., hyperparameter tuning) must be per-
formed as part of the evaluation. It involves an inner CV
loop for hyperparameter tuning within each fold of an outer
CV loop used for risk estimation. This provides an unbiased
estimate of the performance of the model selection procedure
itself.

17 Feature Selection and Model Regu-
larization

Working with datasets that have many features presents several
challenges:

• A higher risk of overfitting the model to the training data.

• Increased computational cost for training.

• The presence of redundant, correlated, or irrelevant features
can degrade model performance and make the model difficult
to interpret.

To address these issues, we use techniques to reduce the com-
plexity of the model. These techniques often improve model quality
by eliminating noise and can significantly increase interpretability.
The main approaches are:

1. Feature Selection: Choosing a subset of the original fea-
tures. This approach directly improves interpretability.

2. Feature Transformation (Dimensionality Reduction):
Creating a new, smaller set of features by combining the orig-
inal ones. Examples include PCA, MDS, and t-SNE.

3. Regularization: A technique that simplifies the model by
penalizing complexity, which can implicitly perform feature
selection. Examples include L1/L2 regularization or limiting
the depth of a decision tree.

18 Feature Selection Approaches

The goal of feature selection is to find a small subset of features
that are most useful for the modeling task. Since checking every
possible combination of features is computationally infeasible , we
use heuristic approaches, which can be categorized as follows:

• Filter Methods: These methods rank features based on
their statistical properties, independent of the model being
trained. They are computationally fast.

• Wrapper Methods: These methods use a specific machine
learning model to evaluate the quality of different feature sub-
sets. They are more computationally expensive but can lead
to better performance for the chosen model.

• Embedded Methods: In these methods, feature selection is
an integral part of the model training process. Regularization
techniques are a prime example.

18.1 Filter Methods

Filter methods evaluate features individually or against the target
variable.

18.1.1 Univariate Measures

These measures assess each feature independently.

• Correlation (e.g., Pearson’s r): Measures the linear de-
pendence between a continuous feature and a continuous tar-
get.

• Mutual Information (Information Gain): Measures the
dependency between two variables, capable of capturing non-
linear relationships. It can be used for discrete or continuous
variables (though binning might be required for continuous
ones).

• Statistical Tests (e.g., ANOVA): Used to check the sta-
tistical significance between a mixed set of feature and target
types.

Mutual Information (MI) MI measures how much information
about one variable is provided by another. It’s defined in terms of
entropy (H):

I(X,Y) = H(Y)−H(Y |X) = H(X)−H(X|Y)

If variables X and Y are independent, I(X,Y) = 0. If Y is a deter-
ministic function of X, then I(X,Y) = H(Y). However, a major
drawback of univariate methods like MI is that they evaluate each
feature in isolation and can miss feature interactions. For instance,
two features might be useless on their own but highly predictive
when combined.

18.1.2 Relief Algorithm

The Relief algorithm is a more advanced filter method that can
detect feature interactions. It estimates the quality of features by
how well they distinguish between instances that are near to each
other. For each randomly selected instance Xi, Relief finds its near-
est neighbor from the same class (nearest hit, Hi) and its nearest
neighbor from a different class (nearest miss, Mi). It then updates
the weight W for each feature A based on how much its value differs
for the hit versus the miss:

W (A)←W (A)− diff(A,Xi, Hi)
2 + diff(A,Xi,Mi)

2

The ‘diff‘ function calculates the distance between the values of fea-
ture A for two instances. The idea is that a good feature should
have similar values for instances of the same class (small difference
with hit) and different values for instances of different classes (large
difference with miss).

Concrete Example for Relief Let’s assume we have a simple
dataset with two features (F1, F2) and a binary class (0 or 1).

• Instance X = (F1 = 3, F2 = 5, Class = 1)

• Nearest Hit H = (F1 = 4, F2 = 6, Class = 1)

• Nearest Miss M = (F1 = 8, F2 = 2, Class = 0)

Let’s initialize the weights for F1 and F2 to zero: W (F1) =
0,W (F2) = 0. We assume the ‘diff‘ function is the simple ab-
solute difference normalized by the range of the feature. Let’s say
range is 10 for both.

1. Update for F1:

• diff(F1, X,H) = |3− 4|/10 = 0.1

• diff(F1, X,M) = |3− 8|/10 = 0.5

• W (F1)← 0− (0.1)2 + (0.5)2 = −0.01 + 0.25 = 0.24

2. Update for F2:

6

• diff(F2, X,H) = |5− 6|/10 = 0.1

• diff(F2, X,M) = |5− 2|/10 = 0.3

• W (F2)← 0− (0.1)2 + (0.3)2 = −0.01 + 0.09 = 0.08

After this one instance, F1 has a higher weight (0.24) than F2
(0.08), indicating it’s more relevant. This process is repeated for
many random instances to get a stable estimate of the feature
weights.

18.2 Wrapper Methods

Wrapper methods wrap the feature selection process around a spe-
cific model, treating it as a black box that provides a quality score.
The goal is to search the space of all possible feature subsets to
find the one that results in the best model performance. Since this
space is huge, heuristic search strategies are used, such as:

• Forward Selection: Start with an empty set and greedily
add the feature that improves performance the most at each
step.

• Backward Elimination: Start with all features and greed-
ily remove the feature that results in the smallest performance
drop.

19 Regularization

Regularization is a technique used to prevent overfitting by adding
a penalty term to the model’s objective function. This penalty dis-
courages overly complex models by constraining the magnitude of
the model’s parameters.

19.1 L2 Regularization (Ridge Regression)

For linear regression, L2 regularization adds a penalty proportional
to the sum of the squared coefficient values (βi). The objective
function becomes:

min
β

n∑
i=1

(yi − βTxi)
2 + λ

p∑
j=1

β2
j

The hyperparameter λ ≥ 0 controls the strength of the regular-
ization. As λ → ∞, all coefficients are pushed towards zero. L2
regularization has a closed-form solution:

β̂L2 = (XTX + λI)−1XT y

This penalty term ensures that the matrix is always invertible, solv-
ing a potential issue with ordinary least squares. It’s crucial to nor-
malize the features before applying regularization to ensure they are
penalized fairly.

19.2 L1 Regularization (Lasso Regression)

L1 regularization adds a penalty proportional to the sum of the
absolute values of the coefficients:

min
β

n∑
i=1

(yi − βTxi)
2 + λ

p∑
j=1

|βj |

L1 regularization has a powerful property: it can force some fea-
ture coefficients to be exactly zero, effectively performing feature
selection. This leads to sparse models. Unlike Ridge, Lasso has no
closed-form solution and must be solved with numerical optimiza-
tion methods.

19.3 Geometric Interpretation

The difference between L1 and L2 can be visualized. Regularization
is equivalent to constraining the coefficient vector β to lie within a
certain region.

• L2 (Ridge): The constraint region is a circle (in 2D) or a hy-
persphere. The solution is the point where the elliptical con-
tours of the sum-of-squares error term touch this circle. This
is unlikely to happen at an axis, so coefficients are shrunk but
rarely to zero.

• L1 (Lasso): The constraint region is a diamond (in 2D) or a
polyhedron. The elliptical contours are much more likely to
hit one of the sharp corners of the diamond, which lie on the
axes. When the solution lies on an axis, one of the feature
coefficients is zero.

19.4 Bayesian Interpretation of Regularization

Regularization can be interpreted from a Bayesian perspective as
placing a prior distribution on the model parameters. The regu-
larized solution corresponds to the Maximum A Posteriori (MAP)
estimate.

p(β|D)︸ ︷︷ ︸
Posterior

∝ p(D|β)︸ ︷︷ ︸
Likelihood

· p(β)︸︷︷︸
Prior

Maximizing the log-posterior is equivalent to minimizing the nega-
tive log-posterior:

min
β

[− log(p(D|β))− log(p(β))]

• The negative log-likelihood corresponds to the error term
(e.g., sum of squared errors).

• The negative log-prior corresponds to the regularization
penalty term.

• L2 (Ridge): This is equivalent to placing a Gaussian (Nor-
mal) prior on the coefficients: βj ∼ N (0, τ2).

• L1 (Lasso): This is equivalent to placing a Laplace prior on
the coefficients: p(βj) ∝ exp(−|βj |/b). The sharper peak of
the Laplace distribution at zero places more mass on coeffi-
cients being exactly zero, leading to sparsity.

20 Generalizing Linear Regression

Standard linear regression assumes the response variable y is con-
tinuous and the errors ϵi are normally distributed: yi = βTxi + ϵi,
where ϵi ∼ N (0, σ2).

However, this model is not suitable for classification problems
where the outcome is binary (0 or 1). A naive approach of fitting
a line and setting a threshold has several problems:

• The linear predictor βTx can produce values outside the [0,
1] range required for probabilities.

• It is not obvious how to convert the output to a valid proba-
bility.

• The model can be heavily skewed by outliers and perform
poorly on imbalanced data.

20.1 Logistic Regression

To address these issues, we use a function that maps the output of
a linear model to the (0, 1) interval. The standard choice for this
is the logistic function (or standard sigmoid):

σ(z) =
1

1 + e−z

7

This function takes any real number z and maps it to a value be-
tween 0 and 1. A useful property of the logistic function is its simple
derivative:

d

dz
σ(z) = σ(z)(1− σ(z))

In logistic regression, we model the probability of a positive class
as:

p(y = 1|x;β) = hβ(x) = σ(βTx) =
1

1 + e−βT x

Since there are only two outcomes, the probability of the negative
class is p(y = 0|x;β) = 1− hβ(x). We can write this compactly for
a single observation (xi, yi) where yi ∈ {0, 1}:

p(yi|xi;β) = hβ(xi)
yi(1− hβ(xi))

1−yi

This is the probability mass function of a Bernoulli distribution.

20.1.1 Parameter Estimation via Maximum Likelihood
(MLE)

To find the optimal parameters β, we maximize the likelihood of
observing our entire dataset. Assuming the observations are inde-
pendent, the likelihood is the product of the individual probabili-
ties:

L(β) = p(y|X;β) =

n∏
i=1

p(yi|xi;β) =

n∏
i=1

hβ(xi)
yi(1− hβ(xi))

1−yi

It is easier to work with the log-likelihood, l(β) = logL(β):

l(β) =

n∑
i=1

[yi log hβ(xi) + (1− yi) log(1− hβ(xi))]

This is also known as the negative of the binary cross-entropy loss.

Substituting hβ(xi) = σ(βTxi) =
eβ

T xi

1+eβ
T xi

and 1−hβ(xi) =
1

1+eβ
T xi

leads to:

l(β) =

n∑
i=1

[
yi log

(
eβ

T xi

1 + eβT xi

)
+ (1− yi) log

(
1

1 + eβT xi

)]

=

n∑
i=1

[
yi(β

Txi − log(1 + eβ
T xi))− (1− yi) log(1 + eβ

T xi)
]

=

n∑
i=1

[
yiβ

Txi − log(1 + eβ
T xi)

]
Unlike linear regression, there is no closed-form solution for β. We
must use an iterative optimization algorithm like gradient descent.
A key property is that the log-likelihood function for logistic regres-
sion is concave, which guarantees that gradient descent will find
the global maximum.

20.1.2 Interpretation of Coefficients

The logistic regression model can be rearranged to understand the
meaning of the coefficients:

p(x)

1− p(x)
= eβ

T x =⇒ log

(
p(x)

1− p(x)

)
= βTx = β0 + β1x1 + . . .

The term log(p/(1− p)) is the log-odds or logit. This shows that
a one-unit increase in a feature xj , holding all other features con-
stant, changes the log-odds of the outcome by βj . Equivalently, the
odds are multiplied by a factor of eβj .

21 Generalized Linear Models (GLMs)

GLMs extend linear regression to handle response variables with
different distributions. A GLM has three components:

1. Random Component: Specifies the probability distribu-
tion of the response variable y, which must be a member
of the exponential family (e.g., Normal, Poisson, Bernoulli,
Gamma).

2. Systematic Component: A linear predictor, which is a lin-
ear combination of the features: η = βTx.

3. Link Function (g): A function that links the expected value
of the response, µ = E[y], to the linear predictor: g(µ) = η.

The general form of a distribution in the exponential family is:

p(y|θ, ϕ) = exp

(
yθ − b(θ)

a(ϕ)
+ c(y, ϕ)

)
For these distributions, it can be shown that E[y] = µ = b′(θ).

The link function’s role is to map the range of µ (e.g., (0,∞) for
Poisson, (0, 1) for Bernoulli) to the entire real line R. The canon-
ical link is a special choice where g(µ) = θ.

21.1 Examples of GLMs

22 Models for Categorical Dependent
Variables

22.1 Direct Extension (Softmax Regression)

This approach is a direct generalization of binary logistic regression
to handle multiple classes.

For a given feature vector x ∈ Rk, the model first computes a
linear score zj for each class j from 1, . . . ,m:

zj = wT
j x+ bj

Here, wj ∈ Rk is the weight vector and bj is the bias term for class
j.

To ensure that the model is identifiable (i.e., has a unique so-
lution), one class is typically designated as a reference class. For
this reference class, the parameters are fixed, usually to zero (e.g.,
wm = 0⃗ and bm = 0).

The scores are then converted into probabilities using the soft-
max function, which normalizes the scores so that they sum to
one:

P (y = j|x) = exp(zj)∑m
k=1 exp(zk)

The total number of parameters to be learned for this model is
(m− 1)(k + 1), accounting for the k weights and 1 bias for each of
the m− 1 non-reference classes.

22.2 One-vs-Rest (OvR) Decomposition

The One-vs-Rest (also known as One-vs-All) strategy decomposes
the single multi-class problem into multiple binary classification
problems.

For a problem with m classes, this method involves training m
independent binary classifiers. For each class j, a binary logistic
regression model is trained to distinguish class j (treated as the
positive class) from all other m−1 classes combined (treated as the
negative class).

After training, to make a prediction for a new input, all m clas-
sifiers produce an output probability. Since these probabilities are
not guaranteed to sum to one, the outputs are scaled to obtain
normalized class probabilities:

P (y = j|x) = pj(y = j|x)∑m
l=1 pl(y = l|x)

where pj(y = j|x) is the probability output from the binary classi-
fier trained for class j.

The total number of parameters to be learned for this model is
(m)(k+1), as each of the m classes has k weights and 1 bias term.

8

22.3 Ordinal Regression

This model is used when the categorical outcome has a natural or-
dering (e.g., ’small’, ’medium’, ’large’). Instead of modeling the
probability of each class, ordinal models typically model the cumu-
lative probability, p(y ≤ j). The most common is the proportional
odds model or cumulative logit model.

It assumes a single linear score ui = βTxi and a series of or-
dered thresholds or cut-points {b1, b2, . . . , bm−1}. The cumulative
probability is then:

p(yi ≤ j) = F (bj − ui)

where F is a cumulative distribution function (CDF), typically the
logistic function. The probability of being in a specific category j
is the difference between two cumulative probabilities:

p(yi = j) = p(yi ≤ j)− p(yi ≤ j − 1) = F (bj − ui)− F (bj−1 − ui)

This model is more parsimonious than multinomial regression, as it
only estimates one set of feature coefficients β and m−1 cut-points,
making it useful for smaller datasets. The cut-points must satisfy
the constraint b1 < b2 < · · · < bm−1.

The total number of parameters to be learned for this model is
k + (m− 2), where k is the number of features.

23 Boosting

Boosting is a powerful ensemble method that, similar to bagging,
combines multiple models to produce a single, superior predictive
model. However, its approach is fundamentally different.

• Bagging builds multiple independent models in parallel on
different bootstrap samples of the data and averages their
predictions.

• Boosting builds models sequentially, where each new model
is trained to correct the errors made by the previous ones.

Boosting is designed to work with weak learners—models that
are only slightly better than random guessing (e.g., a decision tree
with a single split, called a ”stump”). The goal is to combine many
of these weak learners, which typically have high bias, into a single
strong learner with low bias. Using strong learners with boosting
often doesn’t work well and can lead to overfitting.

24 The AdaBoost Algorithm

AdaBoost (Adaptive Boosting) is the archetypal boosting algo-
rithm, designed for binary classification with labels y ∈ {−1, 1}.
The core idea is to iteratively re-weight the data samples. In each
iteration, the algorithm places more weight on instances that were
misclassified by the previous learner, forcing the new learner to
focus on these ”hard” examples.

The algorithm proceeds as follows:

1. Initialization: Assign an equal weight to each of the n train-
ing samples: wi = 1/n for i = 1, . . . , n.

2. Iterate for m = 1, . . . ,M :

(a) Fit a weak classifier Gm(x) to the training data using
the weights wi.

(b) Compute the weighted error of the classifier:

errm =

∑n
i=1 wiI(yi ̸= Gm(xi))∑n

i=1 wi

where I(·) is the indicator function.

(c) Compute the classifier’s weight (or importance factor):

αm =
1

2
log

(
1− errm
errm

)
This value is large and positive for accurate classifiers
and can be negative for classifiers that perform worse
than random.

(d) Update the sample weights:

wi ← wi · exp[αm · I(yi ̸= Gm(xi))]

After this step, re-normalize the weights so they sum
to 1. This update increases the weight of misclassified
samples.

3. Final Prediction: The final prediction is a weighted major-
ity vote of all the weak classifiers:

G(x) = sign

(
M∑

m=1

αmGm(x)

)

25 A General View: Forward Stagewise
Additive Modeling (FSAM)

AdaBoost can be understood as a special case of a more general
framework called Forward Stagewise Additive Modeling. The goal
of FSAM is to build an additive model of the form:

f(x) =

M∑
m=1

βmb(x; γm)

where b(x; γm) are basis functions (our weak learners). The ob-
jective is to minimize a loss function L(y, f(x)) over the training
data.

The ”stagewise” approach builds the model iteratively. At each
step m, we add a new weak learner to the ensemble without chang-
ing the parameters of the learners already added.

1. Initialize f0(x) = 0.

2. For m = 1, . . . ,M :

(a) Find the next weak learner Gm and its coefficient βm by
solving:

(βm, Gm) = argmin
β,G

n∑
i=1

L(yi, fm−1(xi) + βG(xi))

(b) Update the model: fm(x) = fm−1(x) + βmGm(x).

25.1 Deriving AdaBoost from FSAM

AdaBoost is equivalent to FSAM when using the exponential loss
function: L(y, f(x)) = e−yf(x).

At step m, we need to solve:

(βm, Gm) = argmin
β,G

n∑
i=1

e−yi[fm−1(xi)+βG(xi)]

We can rewrite the sum as:

n∑
i=1

e−yifm−1(xi)e−yiβG(xi)

The term e−yifm−1(xi) is independent of β and G. We can treat it

as a weight w
(m)
i for each sample. The problem becomes:

(βm, Gm) = argmin
β,G

n∑
i=1

w
(m)
i e−yiβG(xi)

9

Since yi, G(xi) ∈ {−1, 1}, the term yiG(xi) is 1 if the classification
is correct and -1 if it’s incorrect. We can split the sum:∑

yi=G(xi)

w
(m)
i e−β +

∑
yi ̸=G(xi)

w
(m)
i eβ

This can be rewritten using the total weight of misclassified points,

errm =
∑

w
(m)
i I(yi ̸= G(xi)):

= (1− errm)e−β + errmeβ

Now we solve for Gm and βm separately.

1. Find Gm: For any fixed β > 0, the term eβ is larger than
e−β . To minimize the expression, we must choose the func-
tion G that minimizes its coefficient, which is the weighted
error errm. Thus, the optimal weak learner is:

Gm = argmin
G

n∑
i=1

w
(m)
i I(yi ̸= G(xi))

2. Find βm: With Gm (and thus errm) fixed, we find the opti-
mal βm by taking the derivative of the expression with respect
to β and setting it to zero:

∂

∂β
[(1− errm)e−β + errmeβ] = −(1− errm)e−β + errmeβ = 0

e2β =
1− errm
errm

=⇒ βm =
1

2
log

(
1− errm
errm

)
This is exactly the formula for αm in AdaBoost. The weight

update rule in FSAM is w
(m+1)
i = w

(m)
i e−yiβmGm(xi). This is

also equivalent to the AdaBoost update, since −yiGm(xi) is
−1 for correct predictions and +1 for incorrect ones, making
the exponent ±βm, which matches AdaBoost’s αm · I(yi ̸=
Gm(xi)) if we adjust for the sign convention.

26 Gradient Boosting

Gradient Boosting is a further generalization of boosting that can
be used with any differentiable loss function, not just the exponen-
tial loss. It is particularly useful for regression problems.

The core idea is to reframe boosting as a gradient descent proce-
dure in function space. At each step, instead of fitting a new learner
to re-weighted data, we fit a learner to the negative gradient of
the loss function with respect to the current model’s prediction.
These negative gradients are called pseudo-residuals.

The algorithm is as follows:

1. Initialize the model with a constant value, typically the mean
of the target variable: f0(x) = argmin

γ

∑n
i=1 L(yi, γ).

2. For m = 1, . . . ,M :

(a) Compute pseudo-residuals: For each sample i, cal-
culate the negative gradient of the loss function:

rim = −
[
∂L(yi, f(xi))

∂f(xi)

]
f=fm−1

(b) Fit a weak learner: Train a weak learner hm(x) to
predict the pseudo-residuals {(xi, rim)}ni=1.

(c) Find optimal step size: Find the best coefficient γm
for the new learner by performing a line search to mini-
mize the overall loss:

γm = argmin
γ

n∑
i=1

L(yi, fm−1(xi) + γhm(xi))

(d) Update the model: Add the new weak learner to the
ensemble:

fm(x) = fm−1(x) + γmhm(x)

For example, in regression with squared error loss L(y, f(x)) =
1
2 (y− f(x))2, the negative gradient is simply the ordinary residual,
ri = yi − f(xi). In this case, gradient boosting iteratively fits new
models to the residuals of the previous ensemble.

27 Artificial Neural Networks (ANNs)

The core idea behind Artificial Neural Networks is to learn features
or representations from the data in an automated way. This is done
by applying a series of linear combinations followed by non-linear
transformations, repeated over multiple layers. The heavy reliance
on matrix multiplications is why GPUs, which excel at parallelized
matrix operations, are so crucial for training modern neural net-
works.

27.1 Motivation

Traditional ”shallow” machine learning methods like kernel meth-
ods implicitly transform data into a higher-dimensional space where
it might become linearly separable:

y(x) = wTϕ(x) + b

The drawback is that computing the kernel matrix can be compu-
tationally expensive, often scaling quadratically with the number
of data points.

Neural networks, in contrast, learn the transformation ϕ(x) di-
rectly as part of the model:

ϕ(x) = σ(Ux+ c)

This approach scales linearly with the number of data points, mak-
ing it more suitable for large datasets. The network learns to warp
the feature space to make the problem easier, for example, by mak-
ing non-linearly separable data linearly separable in a transformed
space.

27.2 Mathematical Model of a Neuron

A single artificial neuron is a simple computational unit. It receives
multiple inputs x1, x2, . . . , xk, computes a weighted sum, adds a
bias b, and then applies a non-linear activation function σ.

z =

k∑
i=1

wixi + b or in vector form, z = wTx+ b

y = σ(z)

The output y is then passed as an input to other neurons in the
next layer.

28 Network Architecture

A neural network is formed by organizing these neurons into layers.
A typical feed-forward network consists of:

• An input layer that receives the raw data.

• One or more hidden layers where intermediate computa-
tions and feature learning occur.

• An output layer that produces the final prediction.

28.1 Activation Functions

The activation function σ introduces non-linearity into the model,
which is crucial for learning complex patterns. Without it, a multi-
layer network would be equivalent to a single linear model. Com-
mon activation functions include:

• Sigmoid: σ(z) = 1
1+e−z . Maps values to the (0, 1) range.

10

• Hyperbolic Tangent (Tanh): σ(z) = tanh(z). Maps val-
ues to the (-1, 1) range.

• Rectified Linear Unit (ReLU): σ(z) = max(0, z). A very
popular choice due to its simplicity and effectiveness in com-
bating the vanishing gradient problem.

28.2 Output Layer

The structure of the output layer depends on the task:

• Regression: The output layer typically has a single neu-
ron with a linear activation function to produce a continuous
value.

• Classification: For multi-class classification, a softmax
layer is often used. The softmax function takes the raw out-
puts (logits) for each class and converts them into a probabil-
ity distribution that sums to 1:

P (y = j|x) = ezj∑
k e

zk

28.3 The Power of ANNs: Universal Approxi-
mation

A key theoretical result is the Universal Approximation Theorem.
It states that a neural network with a single hidden layer containing
a finite number of neurons (using a non-linear activation function
like ReLU) can approximate any continuous function to an arbi-
trary degree of accuracy. A ReLU network, for instance, creates a
piecewise linear approximation of the target function.

h(x) =
∑
d

wd max(0, udx+ cd)

While one layer is theoretically sufficient, it might need to be im-
practically large. In practice, deeper networks (with multiple lay-
ers) can often learn the same function more efficiently (with fewer
total neurons) and are easier to train.

29 Training Neural Networks: Back-
propagation

The weights of a neural network are learned by minimizing a cost
function J (e.g., mean squared error) using an optimization algo-
rithm like gradient descent. The core of this process is calculating
the gradient of the cost function with respect to every weight and
bias in the network. This is done efficiently using the backprop-
agation algorithm, which is essentially a systematic application of
the chain rule of calculus.

Let’s denote the activation of a layer as a(l) = σ(z(l)) and the
pre-activation as z(l) = W (l)a(l−1) + b(l). For the final layer L, the

partial derivative of the cost J with respect to a weight w
(L)
jk in that

layer is:
∂J

∂w
(L)
jk

=
∂J

∂a(L)

∂a(L)

∂z(L)

∂z(L)

∂w
(L)
jk

The ”error” from the output layer is then propagated backward to

the preceding layers. For a weight w
(l−1)
ij in a hidden layer, its gra-

dient depends on the gradients of all the neurons it connects to in
the next layer:

∂J

∂a
(l−1)
k

=
∑
j

∂J

∂z
(l)
j

∂z
(l)
j

∂a
(l−1)
k

This process is applied recursively from the last layer to the first.
Modern deep learning libraries like TensorFlow and PyTorch auto-
mate this entire gradient calculation process, allowing developers
to define complex network architectures without manually deriving
the gradients.

29.1 Optimization

The gradients calculated via backpropagation are used to update
the model’s weights.

• Stochastic Gradient Descent (SGD): Instead of calcu-
lating the gradient over the entire dataset (which is compu-
tationally expensive), SGD approximates the gradient using
a single data point or a small ”mini-batch” of points at each
step.

• Learning Rate: The learning rate is a hyperparameter that
controls the step size during optimization. It is often adjusted
(decayed) over the course of training.

• Initialization: Weights are typically initialized to small ran-
dom values from a normal distribution to break symmetry and
allow different neurons to learn different features.

While SGD can be noisy, it is computationally efficient and can
help the model escape shallow local minima in the loss landscape.

30 Training Neural Networks: Practical
Considerations

30.1 Initialization

How we initialize the weights of a neural network is crucial for ef-
fective training. A bad initialization can lead to slow convergence
or getting stuck in poor local minima.

• Zero Initialization: Initializing all weights to zero is a mis-
take. Since all neurons in a layer would have the same inputs
and weights, they would compute the same gradients and un-
dergo the same updates. The network would fail to learn, as
no symmetry is broken.

• Random Initialization: We must initialize weights ran-
domly. However, the scale of these random values matters. If
weights are too large, the pre-activation values (z = wTx+ b)
can be very large, pushing activation functions like sigmoid or
tanh into their flat, saturated regions. In these regions, the
gradients are close to zero, effectively stalling the learning
process. This is known as the vanishing gradient problem
and leads to ”dead neurons” that do not update.

To combat this, specialized initialization schemes are used to
ensure that the variance of the outputs of a layer remains similar
to the variance of its inputs.

• Xavier/Glorot Initialization: Used for activation func-
tions like sigmoid and tanh. It draws weights from a distri-
bution with zero mean and a variance of 1/nin (or 2/(nin +
nout)).

– Normal: W ∼ N (0,
√

2/(nin + nout))

– Uniform: W ∼ U(−
√

6/(nin + nout),+
√

6/(nin + nout))

• He Initialization: Designed for the ReLU activation func-
tion. It uses a variance of 2/nin.

30.2 Optimization

The process of finding the optimal weights is guided by an opti-
mizer.

• Mini-batch Gradient Descent: Instead of using the entire
dataset (batch GD) or a single sample (SGD), we compute
the gradient on a small ”mini-batch” of data. This provides
a good balance between the stability of batch GD and the
efficiency of SGD. Performance is typically evaluated on a
separate validation set periodically (e.g., every X batches).

• Learning Rate Schedules: The learning rate is arguably
the most important hyperparameter. A fixed learning rate is
often suboptimal. It’s common practice to use a schedule:

11

– Step Decay: Start with a high learning rate and de-
crease it by a factor at specific epochs.

– Continuous Decay: Gradually decrease the learning
rate over time.

• Advanced Optimizers: Modern optimizers adapt the learn-
ing rate for each parameter individually.

– Momentum: Accumulates a ”velocity” of past gradi-
ents to accelerate descent in consistent directions and
dampen oscillations.

– AdaGrad: Adapts the learning rate for each parameter,
decreasing it for parameters with frequently occurring
features.

– RMSProp: A modification of AdaGrad that introduces
a ”forgetting” factor to prevent the learning rate from
decaying to zero too quickly.

– Adam (Adaptive Moment Estimation): The most
common optimizer in practice. It combines the ideas of
Momentum and RMSProp.

30.3 Efficiency

Training large models requires significant computational resources.
Efficiency can be improved by using lower-precision numerical for-
mats for weights and activations.

• FP32 (Single Precision): The standard 32-bit floating-
point format.

• FP16 (Half Precision): Uses 16 bits. This reduces memory
usage, allowing for larger models or batch sizes, and can speed
up computation on modern GPUs with specialized hardware
(Tensor Cores).

• Mixed Precision Training: A technique that uses FP16
for most operations to gain speed and memory benefits, while
strategically using FP32 for certain operations to maintain
numerical stability.

30.4 Regularization

These are techniques used to prevent overfitting.

• Penalty-based: L1 and L2 regularization (also known as
weight decay) add a penalty to the loss function based on the
magnitude of the weights.

• Ensembling: Training multiple models with different initial-
izations and averaging their predictions.

• Dropout: During training, randomly sets a fraction of neu-
ron activations to zero at each update step. This prevents
neurons from co-adapting too much and forces the network
to learn more robust features.

• Batch Normalization: Normalizes the activations within a
mini-batch to have a mean of 0 and a variance of 1. It helps
stabilize and accelerate training by reducing ”internal covari-
ate shift.” A typical layer sequence becomes: Weight Layer
→ Batch Norm Layer → Activation Layer.

31 Neural Network Architectures

31.1 Convolutional Neural Networks (CNNs)

CNNs are the standard architecture for computer vision tasks.
They are designed to be invariant to translation and scale by using
shared weights and local connectivity.

• Convolutional Layer: Instead of a fully connected layer,
a convolutional layer uses a set of small filters (kernels) that
slide across the input image (or feature map). Each filter is
specialized to detect a specific pattern (e.g., an edge, a cor-
ner). The output is a set of new feature maps.

• Pooling Layer: This layer downsamples the feature maps,
reducing their spatial dimensions. This helps to make the
representation more robust to small shifts and distortions.
Common pooling operations are Max Pooling and Average
Pooling.

• Typical Structure: A typical CNN consists of several blocks
of [Conv → ReLU → Pooling], followed by one or more fully
connected layers at the end for classification.

31.2 Transformer Architectures (e.g., GPT)

Transformers have become the dominant architecture for NLP and
are increasingly used in other domains. They were designed to han-
dle sequential data without the sequential processing limitations of
Recurrent Neural Networks (RNNs).

• Language Modeling: The fundamental task is often lan-
guage modeling: predicting the next token (word or sub-word)
in a sequence given all previous tokens. The loss function
is typically cross-entropy (minimized by maximizing the log-
likelihood of the data).

• Pre-training and Fine-tuning: Large models like GPT
(Generative Pre-trained Transformer) are first pre-trained on
a massive amount of text data in a self-supervised way. They
are then fine-tuned on a smaller, task-specific dataset (e.g.,
for question answering).

• Self-Attention: The core innovation of the Transformer is
the self-attention mechanism. This allows the model to weigh
the importance of all other tokens in the input sequence when
processing a specific token. It addresses the issue that the
meaning of a word can depend on distant words in the se-
quence, not just its immediate neighbors.

31.2.1 The Self-Attention Mechanism

For each token in the input sequence, we create three vectors: a
Query (Q), a Key (K), and a Value (V).

1. A ”relevance” score is computed between the Query vector of
the current token and the Key vector of every other token,
typically using a dot product.

2. These scores are scaled (by
√
dk) and passed through a soft-

max function to get attention weights. These weights rep-
resent how much attention the current token should pay to
every other token.

3. The final output for the token is a weighted average of all the
Value vectors, using the attention weights.

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V

This mechanism allows for rich communication between all parts of
the sequence. Multi-Head Attention applies this process multi-
ple times in parallel with different learned transformations of Q, K,
and V, allowing the model to focus on different types of relation-
ships simultaneously.

A standard Transformer block consists of a multi-head attention
layer followed by a feed-forward network, with residual connections
and layer normalization applied after each sub-layer.

12

32 Motivation: From Linear Models to
Kernels

Linear models, like logistic regression, are defined by a linear deci-
sion boundary:

z(x) = wTx+ b

While simple, these models can be made much more powerful. If
the data is not linearly separable in its original feature space, we
can often make it separable by creating new, non-linear features
from the original ones. For example, we can add polynomial terms:

z(x) = w0 + w1x1 + w2x2 + w3x1x2 + w4x
2
1 + w5x

2
2

This is equivalent to first mapping the data into a higher-
dimensional feature space using a function Φ, and then applying
a linear model in that new space.

z(x) = wTΦ(x)

The problem with this explicit feature expansion is that the number
of new features can grow exponentially, making it computationally
expensive or even infeasible.

33 The Kernel Trick

The kernel trick provides an elegant solution for non-linear prob-
lems. Many machine learning algorithms can be formulated to de-
pend only on the inner products (dot products) of feature vectors,
e.g., ⟨Φ(xi),Φ(xj)⟩.

A kernel is a function K(xi,xj) that computes this inner prod-
uct in a high-dimensional feature space directly from the original
vectors, without ever explicitly performing the feature mapping Φ.

K(xi,xj) = ⟨Φ(xi),Φ(xj)⟩

This allows us to work with very high or even infinite-dimensional
feature spaces efficiently. The Representer Theorem states that
for a wide range of models, the optimal solution f(x) can be written
as a weighted combination of kernel evaluations against the training
data points:

f(x) =

n∑
i=1

αiK(x,xi)

33.1 A Concrete Example: The Polynomial Ker-
nel

To demonstrate how a kernel function works as a computational
shortcut, consider original vectors in R2, such as xi = (xi1, xi2)
and xj = (xj1, xj2).

Let’s define a feature map Φ that takes our 2D data into a 6D
space:

Φ(x) = (x2
1, x

2
2,
√
2x1x2,

√
2x1,
√
2x2, 1)

33.1.1 Method 1: The Hard Way (Explicit High-
Dimensional Calculation)

First, we apply the map Φ to our vectors and then compute their
dot product in R6.

⟨Φ(xi),Φ(xj)⟩ = (x2
i1)(x

2
j1) + (x2

i2)(x
2
j2) + (

√
2xi1xi2)(

√
2xj1xj2)

+ (
√
2xi1)(

√
2xj1) + (

√
2xi2)(

√
2xj2) + (1)(1)

= x2
i1x

2
j1 + x2

i2x
2
j2 + 2xi1xi2xj1xj2

+ 2xi1xj1 + 2xi2xj2 + 1

This calculation is cumbersome and computationally expensive as
it requires explicit transformation into R6.

33.1.2 Method 2: The Kernel Trick

For the specific feature map Φ above, there is an equivalent kernel
function, the polynomial kernel of degree 2:

K(xi,xj) = (xT
i xj + 1)2

Let’s evaluate this using only the original 2D vectors. The dot
product in the original space is xT

i xj = xi1xj1 + xi2xj2.

K(xi,xj) = ((xi1xj1 + xi2xj2) + 1)2

= (xi1xj1)
2 + (x2

i2x
2
j2) + 12 + 2(xi1xj1)(xi2xj2)

+ 2(xi1xj1)(1) + 2(xi2xj2)(1)

= x2
i1x

2
j1 + x2

i2x
2
j2 + 2xi1xj1xi2xj2

+ 2xi1xj1 + 2xi2xj2 + 1

Both methods yield the exact same result. The kernel function
K(xi,xj) provides the result of the 6-dimensional dot product by
performing a much simpler calculation in the original 2D space.
This allows us to leverage the power of high-dimensional feature
spaces without ever paying the computational cost of explicit trans-
formation.

34 Support Vector Machines (SVMs)

SVMs are a classic example of a model that benefits greatly from
kernels.

34.1 Hard-Margin SVM (Linearly Separable
Case)

The goal of an SVM is to find the hyperplane that separates the
two classes with the maximum possible margin. The margin is the
distance from the decision boundary to the closest data point from
either class.

For a data point xi with label yi ∈ {−1, 1}, the decision bound-
ary is wTx+ b = 0. We require all data points to be on or outside
the margin, which we can set to have a width of 1 on each side:

yi(w
Txi + b) ≥ 1 ∀i

The total width of the margin is 2/||w||. To maximize the margin,
we must minimize ||w||, which is equivalent to minimizing 1

2 ||w||
2.

The optimization problem is:

min
w,b

1

2
||w||2 subject to yi(w

Txi + b) ≥ 1 ∀i

34.1.1 The Dual Formulation

This constrained optimization problem can be solved by reformu-
lating it using Lagrange multipliers.

1. We begin with the Lagrangian, which incorporates the con-
straint using multipliers αi ≥ 0:

L(w, b, α) = 1

2
||w||2 −

n∑
i=1

αi[yi(w
Txi + b)− 1]

2. To find the minimum with respect to w and b, we take the
partial derivatives and set them to zero:

• ∂L
∂w = w −

∑n
i=1 αiyixi = 0 =⇒ w =

∑n
i=1 αiyixi

• ∂L
∂b = −

∑n
i=1 αiyi = 0

3. We substitute these results back into the Lagrangian to
eliminate w and b. We start by substituting w into the term
−
∑

αiyiw
Txi and use the fact that

∑
αiyi = 0:

−
∑
i

αi[yi(w
Txi + b)− 1] = −

∑
i

αiyiw
Txi − b

∑
i

αiyi +
∑
i

αi =

−
∑
i,j

αiαjyiyjx
T
j xi +

∑
i

αi

13

4. We then combine this with the first term of the Lagrangian,
1
2 ||w||

2 = 1
2

∑
i,j αiαjyiyjx

T
i xj .

L(α) =
1

2

∑
i,j

αiαjyiyjx
T
i xj −

∑
i,j

αiαjyiyjx
T
i xj +

n∑
i=1

αi

5. Simplifying this gives the final dual problem. We want to
maximize this function with respect to α. Replacing the dot prod-
uct xT

i xj with the kernel function K(xi, xj) yields the final kernel-
ized form:

max
α

L(α) =

n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjK(xi, xj)

subject to the constraints: αi ≥ 0 and
∑

αiyi = 0.
The non-zero αi coefficients correspond to the data points that

lie exactly on the margin. These points are called the support
vectors.

34.2 Soft-Margin SVM

For data that is not perfectly linearly separable, the soft-margin
SVM introduces slack variables ξi ≥ 0. These variables allow some
data points to be within the margin or misclassified. The constraint
is relaxed to:

yi(w
Txi + b) ≥ 1− ξi

The objective function is modified to penalize these violations:

min
w,b,ξ

1

2
||w||2 + C

n∑
i=1

ξi

The hyperparameter C > 0 controls the trade-off between maximiz-
ing the margin and minimizing the classification error. The dual
formulation is very similar, with the only change being an upper
bound on the αi coefficients: 0 ≤ αi ≤ C.

34.3 Common Kernel Functions

• Linear Kernel: K(x, z) = xT z.

• Polynomial Kernel: K(x, z) = (xT z + c)d.

• Radial Basis Function (RBF) Kernel: K(x, z) =
exp(−γ||x− z||2).

34.4 Kernelized Ridge Regression

The kernel trick can also be applied to Ridge Regression.

1. The primal objective function is:

min
w

n∑
i=1

(yi − wTΦ(xi))
2 + λ∥w∥2

2. The Representer Theorem states that the optimal weight vec-
tor w can be expressed as a linear combination of the mapped
training instances:

w =

n∑
j=1

αjΦ(xj)

3. We substitute this expression for w back into the objective
function.

• The regularization term becomes λ∥w∥2 = λαTKα.

• The loss term
∑n

i=1(yi − wTΦ(xi))
2 becomes (y −

Kα)T (y −Kα).

4. The full objective function, now in terms of α, is:

J(α) = (y −Kα)T (y −Kα) + λαTKα

5. By taking the gradient with respect to α and setting it to
zero, we can find the closed-form solution for α:

α = (K + λI)−1y

6. The final prediction for a new input xnew is then given by:

f(xnew) =

n∑
i=1

αiK(xi, xnew)

Unlike SVMs, all αi are generally non-zero, meaning all train-
ing points are required for prediction.

35 What Makes a Function a Valid Ker-
nel?

For a function K(x,x′) to be a valid kernel, it must represent a
dot product in some feature space. This ensures the mathemati-
cal properties required by kernel methods, such as convexity of the
optimization problem. Two key properties are essential:

35.1 Symmetry

The kernel must be symmetric, meaning:

K(x,x′) = K(x′,x)

for all inputs x and x′. This reflects the symmetric nature of a dot
product.

35.2 Positive Semi-Definiteness (PSD)

For any finite set of data points {x1, . . . ,xn}, the corresponding
Gram matrix K (where Kij = K(xi,xj)) must satisfy:

c⊤Kc ≥ 0

for all vectors c ∈ Rn. PSD ensures the optimization problem re-
mains convex and well-behaved.

These conditions guarantee that the kernel corresponds to an
inner product in some feature space. Valid kernels include linear,
polynomial, and RBF kernels. New valid kernels can be constructed
from existing ones using rules such as:

• aK1 + bK2 for a, b ≥ 0

• K1 ·K2 (element-wise product)

• Compositions like f(K1(x,x
′)) where f preserves PSD.

36 Kernel Approximation Techniques

While kernel methods offer powerful ways to handle non-linear re-
lationships, computing and storing the full n × n kernel matrix
Knn can be computationally prohibitive for large datasets. Kernel
approximation techniques address this by reducing the complexity
while retaining much of the kernel’s expressive power.

36.1 The Nyström Method

The Nyström method approximates the full kernel matrix by sam-
pling a small subset of m≪ n data points. It computes the kernel
matrix between the sampled points Kmm and the kernel matrix
between all data points and the sampled points Knm. The approx-
imation of the full kernel matrix Knn is then given by:

Knn ≈ KnmK−1
mmK⊤

nm

This significantly reduces storage and computational requirements.

14

37 Feature Importance

Understanding which features are most influential in a model’s pre-
dictions is a fundamental part of explainable AI (XAI).

37.1 Feature Importance in Linear Models

For a simple linear regression model, one might initially assume
that the feature with the largest coefficient is the most important.
For example, given the model:

f(x) = −0.23x1 + 2.37x2 + 1.3

It appears that x2 is the most important feature. However, this can
be misleading because the importance of a coefficient depends on
the scale of its corresponding feature. To make a fair comparison,
the features must be on the same scale (e.g., by standardizing them
before training). After scaling, the model’s coefficients might reveal
a different story, for instance, showing that x1 has a larger impact.

37.2 Detailed Feature Importance: Partial De-
pendence Plots (PDPs)

While a single number for global feature importance is useful, it
doesn’t show how the prediction changes as the feature’s value
changes. Partial Dependence Plots visualize this relationship. The
core idea is to see how a model’s prediction changes based on one
feature, while keeping all other feature values fixed at a constant.
This shows the marginal effect of a feature on the prediction.

37.3 Local Feature Importance

Local explanations focus on understanding a single prediction for
a specific data instance. For a linear model, this is straight-
forward. The contribution of each feature is simply its coeffi-
cient multiplied by its value for that instance. For the instance
(x1 = 0.1, x2 = 0.0001), the prediction f(x) = 1.28 is broken down
as follows:

f(x) = −0.23 · 0.1︸ ︷︷ ︸
contrib of x1

+2.37 · 0.0001︸ ︷︷ ︸
contrib of x2

+ 1.3︸︷︷︸
intercept/bias

=

= −0.023 + 0.00237 + 1.3 ≈ 1.28

This is a model-specific method as it relies directly on the model’s
coefficients.

37.4 Interpretability Beyond Linear Models

The techniques above are simple for linear models because these
models assume linearity, additivity, and no feature interactions.
These ideas can be extended to Generalized Additive Models
(GAMs) of the form f(x) =

∑
fk(xk)+β0 , but how do we achieve

interpretability for complex, non-additive ”black-box” models like
AdaBoost or deep neural networks?

To do this, we need a model-agnostic way to simulate the ab-
sence of a feature to see its impact.

• Retraining: One could retrain the model without a feature,
but this is computationally very expensive and creates an en-
tirely new model.

• Marginalizing: Instead of fixing other features to a con-
stant (like in PDPs), a more robust method is to average the
model’s predictions over the distribution of the other features.
This avoids creating unrealistic data points. The global im-
portance of a feature can then be measured by the variance
or standard deviation of these marginal predictions.

38 Shapley Values in XAI

Shapley values offer a principled, model-agnostic approach to local
feature importance, rooted in cooperative game theory. They pro-
vide a way to fairly distribute the ”payout” (the model’s prediction)
among the ”players” (the features).

38.1 Core Concepts

The contribution of a set of features S is the difference between
the prediction made using those features, f(S), and the baseline
prediction made with no features, f(∅).

∆(S) = f(S)− f(∅)

The total ”payout” to be distributed is ∆(N), where N is the set
of all features. The Shapley value ϕi for a feature i is its average
marginal contribution across all possible subsets (or ”coalitions”)
of features.

38.2 The Shapley Value Formula

The Shapley value for feature i is calculated as:

ϕi =
∑

S⊆N\{i}

|S|!(p− |S| − 1)!

p!
(∆(S ∪ {i})−∆(S))

where p is the total number of features, and the sum is over all sub-
sets S that do not contain feature i. The term (∆(S ∪{i})−∆(S))
is the marginal contribution of feature i when it is added to the
subset S.

38.3 Simple SHAP Value Example (Two Fea-
tures)

Let the model f(x1, x2) be defined as:

f(0, 0) = 0,

f(1, 0) = 10,

f(0, 1) = 20,

f(1, 1) = 30.

We explain the prediction for input x = (1, 1).

38.3.1 Step 1: Baseline Value

The baseline is the average prediction over all possible inputs:

baseline =
0 + 10 + 20 + 30

4
= 15

38.3.2 Step 2: SHAP Value for x1

Subset ∅:
No features known:

E[f(·)] = 15

Add x1 = 1: average over x2 ∈ {0, 1}

E[f(1, ·)] = f(1, 0) + f(1, 1)

2
=

10 + 30

2
= 20

Contribution: 20− 15 = 5

Subset {x2}:
Given x2 = 1, x1 unknown:

E[f(·, 1)] = f(0, 1) + f(1, 1)

2
=

20 + 30

2
= 25

Add x1 = 1: f(1, 1) = 30 Contribution: 30− 25 = 5

SHAP for x1:

ϕ1 =
1

2
(5 + 5) = 5

15

38.3.3 Step 3: SHAP Value for x2

Subset ∅:

E[f(·)] = 15, E[f(·, x2 = 1)] =
20 + 30

2
= 25

Contribution: 25− 15 = 10

Subset {x1}:

E[f(1, ·)] = 10 + 30

2
= 20, f(1, 1) = 30

Contribution: 30− 20 = 10

SHAP for x2:

ϕ2 =
1

2
(10 + 10) = 10

38.3.4 Final Result

ϕ1 = 5, ϕ2 = 10

Prediction: f(1, 1) = 30, Baseline: 15

ϕ1 + ϕ2 = 15 = f(1, 1)− baseline

38.4 Axioms and Computation

Shapley values are the only attribution method that simultaneously
satisfies four desirable properties: Efficiency (Additivity), Symme-
try, Dummy, and Linearity.

• Efficiency/Additivity: The sum of the Shapley values for
all features equals the total difference between the model’s
prediction and the baseline prediction.

• Symmetry: If two features have the same contribution to
all possible coalitions, they have the same Shapley value.

• Dummy: If a feature has no effect on the prediction, its
Shapley value is zero.

The exact computation of Shapley values is very expensive (O(2p)),
as it requires evaluating the model for all possible subsets of fea-
tures. Therefore, in practice, they are approximated using methods
like SHAP (SHapley Additive exPlanations), which uses clever sam-
pling and kernel-based approaches to estimate the values efficiently.

39 A Review of Empirical Risk Mini-
mization (ERM)

Before diving into Bayesian inference, it’s useful to recall the fre-
quentist approach, which is often framed as Empirical Risk Mini-
mization (ERM). This is the underlying principle for many machine
learning algorithms, including those solved with Maximum Likeli-
hood Estimation (MLE).

39.1 The ERM Framework

The goal in ERM is to learn a function h : X → Y from a pre-
defined set of functions (the hypothesis space, H) that minimizes
a chosen loss function L over the training data D = {(xi, yi)}ni=1.

The chosen hypothesis ĥ is the one that minimizes the total loss on
the training set:

ĥERM = argmin
h∈H

n∑
i=1

L(h(xi), yi)

The core idea is to select a single best model from the hypothesis
space based on its performance on the training data. If the true
data-generating function hTRUE is within our hypothesis space H,
then as we get more data, ĥERM will converge towards hTRUE.

39.2 Issues with the ERM/MLE Approach

While powerful, this approach has several limitations:

1. No built-in quantification of uncertainty: ERM pro-
vides a single point estimate for the model parameters (e.g.,
βERM). It doesn’t naturally tell us how certain we are about
this estimate. While we can use techniques like bootstrap-
ping or calculating standard errors and confidence intervals
to estimate uncertainty, their interpretation can be somewhat
awkward.

2. Overfitting: ERM can easily overfit the training data. The
common solution is to introduce regularization, such as the
L2 penalty in Ridge Regression, which adds a term to the loss
function.

βERM, L2 = argmin
β

n∑
i=1

(βTxi − yi)
2 + λ

p∑
j=1

β2
j

3. Messy Decision Theory: The choice of loss function is
tied directly to the optimization problem. If we want to eval-
uate our model using a different metric, we can’t easily do so
without reformulating and re-solving the entire problem. The
learning and decision-making processes are coupled.

40 Bayesian Inference

40.1 The Core Idea

Bayesian inference offers a different perspective. Instead of selecting
a single best model, the core idea is to determine a probability
distribution over all possible models (or parameters) in the
hypothesis space. We use data to update our beliefs about which
models are more or less probable.

This is achieved using Bayes’ Theorem to find the posterior
distribution p(h|D):

p(h|D)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
p(D|h) ·

Prior︷︸︸︷
p(h)

p(D)︸ ︷︷ ︸
Evidence

∝ p(D|h) · p(h)

• Prior p(h): Our belief about the probability of a hypothesis
h before seeing the data.

• Likelihood p(D|h): The probability of observing the data D
if hypothesis h were true. This is the same likelihood function
used in MLE.

• Posterior p(h|D): Our updated belief about the probability
of hypothesis h after seeing the data.

40.2 Example: Bayesian Linear Regression

Let’s assume the standard linear model setup, where the error vari-
ance σ2 is known.

• Likelihood: The likelihood of the data is given by the normal
distribution:

p(Y |X,β, σ2) =

n∏
i=1

p(yi|xi, β, σ
2) =

n∏
i=1

1√
2πσ2

exp

(
− (βTxi − yi)

2

2σ2

)
• Prior: We must specify a prior belief about the parameters
β. A common choice is a zero-mean Gaussian prior, which ex-
presses a belief that smaller coefficient values are more likely.
This acts as a form of regularization.

p(β) =

p∏
j=1

1√
2πτ2

exp

(
−

β2
j

2τ2

)
where τ2 is the prior variance.

16

40.2.1 Deriving the Posterior

The posterior is proportional to the likelihood times the prior. It’s
easiest to work with the log-posterior:

log p(β|X,Y) = log p(Y |X,β) + log p(β) + const.

= − 1

2σ2

n∑
i=1

(βTxi − yi)
2 − 1

2τ2

p∑
j=1

β2
j + const.

Notice that maximizing this log-posterior (known as Maximum A
Posteriori or MAP estimation) is equivalent to minimizing the L2-
regularized (Ridge) regression loss function. Using a Laplace prior
instead of a Gaussian one would be equivalent to L1 (Lasso) regu-
larization.

Because the prior and likelihood are both Gaussian, the poste-
rior will also be a Gaussian distribution. By performing a procedure
called ”completing the square”, the log-posterior can be rewritten
into the quadratic form of a multivariate Gaussian:

log p(β|X,Y) = −1

2
(β − µpost)

TΣ−1
post(β − µpost) + const.′

This tells us that the posterior distribution is β|Y,X ∼
N (µpost,Σpost), with posterior covariance Σ−1

post = 1
σ2X

TX + 1
τ2 I

and posterior mean µpost = Σpost

(
1
σ2X

TY
)
.

40.3 Pros and Cons of Bayesian Inference

• Pros:

– Provides a full posterior distribution, offering a natural
and conceptually simple way to quantify uncertainty.

– Robust to overfitting due to model averaging.

– Decouples inference (finding the posterior) from
decision-making (using the posterior to make a predic-
tion). We can use the same posterior to make decisions
based on different loss functions (e.g., use the posterior
mean for MSE, posterior median for MAE).

• Cons:

– Requires specifying a prior, which can be subjective.

– The computational complexity is often much higher.
MLE is an optimization problem, whereas Bayesian in-
ference is an integration problem (to find the evidence
term p(D)), which is typically harder.

40.4 Bayesian Risk

The goal is to find the estimator θ̂ that minimizes the expected loss
(risk) over the posterior distribution:

R(θ̂) = Ep(θ|D)[L(θ̂, θ)] =

∫
L(θ̂, θ)p(θ|D)dθ

To find the optimal estimator, we differentiate the risk with
respect to θ̂ and set it to zero:

d

dθ̂
R(θ̂) =

∫
∂L(θ̂, θ)

∂θ̂
p(θ|D)dθ = 0

41 Computation in Bayesian Inference

For many models, especially simpler ones with conjugate priors,
the posterior distribution can be calculated analytically. However,
for most non-trivial models, this is not possible, and we must use
computational methods to approximate it.

1. Analytical (Closed Form): This method provides an ex-
act, unbiased solution for the posterior distribution. It is very
fast to compute. However, a closed-form solution does not ex-
ist for many complex models.

2. Markov Chain Monte Carlo (MCMC): A class of algo-
rithms that perform integration by sampling. They draw a
sequence of samples from a Markov chain whose stationary
distribution is the desired posterior distribution p(θ|D). This
provides an unbiased but not exact estimate of the posterior.
A key drawback is that it can be very slow and computation-
ally intensive.

3. Approximate Inference: These methods approximate the
true (and often intractable) posterior p(θ|D) with a simpler,
tractable distribution q(θ). These methods are typically bi-
ased.

• Laplace Approximation: A fast and simple method
that approximates the posterior with a Gaussian distri-
bution. It finds the mode (peak) of the posterior distri-
bution and then uses the curvature (the Hessian matrix
of the log-posterior) at that mode to define the covari-
ance of the approximating Gaussian. The result is a
biased approximation of the true posterior.

• Variational Inference (VI): Another powerful ap-
proximation method that turns the integration problem
into an optimization problem. VI finds the best approx-
imation from a family of distributions by minimizing the
Kullback-Leibler (KL) divergence to the true posterior.
Like the Laplace approximation, it is fast but produces
a biased estimate.

42 Laplace Approximation

The Laplace approximation provides a way to approximate a pos-
terior probability distribution with a Gaussian distribution. This is
particularly useful when the posterior is unimodal but not a stan-
dard distribution that is easy to work with. The core idea is to
find the mode of the distribution (its peak) and then fit a Gaus-
sian centered at that mode, where the variance of the Gaussian is
determined by the curvature of the log-posterior at the mode.

The steps to compute the Laplace approximation are as follows:

1. Define the log-probability: Write down the logarithm
of the target probability distribution, which we denote as
l(x) = log p(x). Working with the log-probability is often
easier than working with the probability directly.

2. Find the mode: Solve for the point x̂ where the first deriva-
tive of the log-probability is zero. This point, x̂, is the mode
(the peak) of the distribution.

l′(x̂) = 0

3. Compute the curvature at the mode: Calculate the sec-
ond derivative of the log-probability, l′′(x), and evaluate it at
the mode, x̂. This value tells us about the sharpness of the
peak.

• If l′′(x̂) is strongly negative, the peak is sharp ⇒ this
corresponds to a small variance.

• If l′′(x̂) is near zero, the peak is flat ⇒ this corresponds
to a large variance.

4. Calculate the approximate variance: Form the approxi-
mate variance, σ2, by taking the negative inverse of the second
derivative at the mode.

σ2 = (−l′′(x̂))−1

5. Form the Gaussian approximation: Write down the final
Gaussian distribution, q(x), which approximates p(x). This
distribution is centered at the mode x̂ with the variance σ2

you just calculated.

q(x) = N (x | x̂, σ2)

17

6. Use the approximation: Approximate any integral or ex-
pectation that was originally under p(x) by using the corre-
sponding, and much simpler, integral or expectation under
the new Gaussian distribution q(x).

43 Unsupervised Machine Learning

Unsupervised learning deals with unlabeled data, aiming to find
hidden patterns or intrinsic structures within the data itself. The
general process involves defining a model structure (parameterized
by Θ) and optimizing a loss or criterion function L(Θ) to find the
best parameters that describe the data’s structure.

43.1 Clustering

Clustering is the task of grouping a set of objects in such a way
that objects in the same group (called a cluster) are more similar
to each other than to those in other groups.

43.1.1 Types of Clustering Algorithms

There are several families of clustering algorithms, each with dif-
ferent strengths.

• Partitional Clustering: These algorithms divide the
dataset into a pre-specified number of non-overlapping clus-
ters.

– k-Means: Assigns points to the cluster with the nearest
centroid (mean). This can be problematic for data types
where a mean is not well-defined (e.g., text, images).

– k-Medoids: Similar to k-means, but uses an actual data
point (a medoid) as the center of the cluster, making it
more robust and suitable for arbitrary data types.

– k-means++ Standard k-means can be sensitive to the
initial placement of cluster centroids, often leading to
suboptimal solutions. K-means++ is an initialization
algorithm designed to provide a more robust and effec-
tive starting point for the k-means algorithm. It aims
to select initial centroids that are well-separated. The
procedure is as follows:

1. Select the first centre µ1 uniformly at random from
the dataset.

2. For i = 2, . . . , k:

(a) For each data point x, compute the Euclidean
distance from x to the nearest already-chosen
centre:

D(x) = min
1≤j<i

∥x− µj∥

(b) Choose the next centre µi from the data points
with probability:

Pr(x is chosen as µi) =
D(x)2∑
x′ D(x′)2

This probabilistic selection ensures that new centroids
are chosen with a higher probability from points that
are farther away from existing centroids, leading to a
more spread-out initial configuration.

• Hierarchical Clustering: Builds a hierarchy of clusters, ei-
ther agglomerative (bottom-up, merging clusters) or divisive
(top-down, splitting clusters). It doesn’t require the number
of clusters to be specified beforehand.

• Density-Based Clustering: Finds clusters based on areas
of high density separated by areas of low density. A popular
example is DBSCAN.

• Model-Based Clustering: Assumes the data is a mixture
of a finite number of probability distributions (e.g., Gaus-
sians). It uses an algorithm like Expectation-Maximization
(EM) to fit a Gaussian Mixture Model (GMM) to the
data.

43.2 Data Maps (Dimensionality Reduction)

This family of unsupervised methods aims to represent high-
dimensional data in a lower-dimensional space (an embedding or
”data map”), often for visualization or as a pre-processing step for
other ML models.

43.2.1 Principal Component Analysis (PCA)

PCA is a linear technique that finds a new set of orthogonal axes
(principal components) that capture the maximum amount of vari-
ance in the data.

Derivation: Assume the data matrix X is centered (mean of
zero). The projection of the data onto a direction vector u1 is
z = Xu1. The variance of this projected data is:

Var(z) =
1

n
||Xu1||2 =

1

n
(Xu1)

T (Xu1) =
1

n
uT
1 X

TXu1 = uT
1 Su1

where S = 1
nX

TX is the covariance matrix of the data. Our goal
is to find the direction u1 that maximizes this variance, subject to
the constraint that u1 is a unit vector (uT

1 u1 = 1). We can solve
this using a Lagrange multiplier λ:

L(u1, λ) = uT
1 Su1 − λ(uT

1 u1 − 1)

Taking the derivative with respect to u1 and setting it to zero gives:

∂L
∂u1

= 2Su1 − 2λu1 = 0 =⇒ Su1 = λu1

This is the fundamental eigenvector equation. It shows that the op-
timal direction u1 is the eigenvector of the covariance matrix S. The
variance captured by this component is equal to its corresponding
eigenvalue:

Var(z) = uT
1 Su1 = uT

1 (λu1) = λ(uT
1 u1) = λ

To capture the most variance, we choose the eigenvector corre-
sponding to the largest eigenvalue. Subsequent components are
the eigenvectors corresponding to the next largest eigenvalues.

Interpretation: The elements of an eigenvector uk are called the
loadings, and they indicate how much each original feature con-
tributes to that principal component. A scree plot can be used to
visualize the percentage of variance explained by each component,
helping to decide how many components to retain. A key limita-
tion of PCA is that it is a linear method and will fail to capture
non-linear structures in the data.

43.2.2 Multidimensional Scaling (MDS)

MDS is a technique that aims to create a low-dimensional embed-
ding that preserves the pairwise distances between points from the
original high-dimensional space. It minimizes a loss function like:

L =
∑
i,j

(dij −Dij)
2

where dij is the original distance and Dij is the distance in the
new embedding. A weakness of this approach is that it gives equal
weight to preserving both small and large distances. In many cases,
we care more about preserving the local structure of nearby points.

18

43.2.3 t-Distributed Stochastic Neighbor Embedding (t-
SNE)

t-SNE is a powerful non-linear technique for visualization, created
by Geoffrey Hinton. It improves upon a predecessor called SNE.

• SNE first converts high-dimensional Euclidean distances into
conditional probabilities representing similarities. The simi-
larity of point xj to xi is the probability that xi would pick
xj as its neighbor if neighbors were picked in proportion to
their probability density under a Gaussian centered at xi.

• A problem with using a Gaussian in the low-dimensional space
is that it can lead to a ”crowding problem,” where clusters
become too dense and overlap.

• t-SNE solves this by using a heavy-tailed Student’s t-
distribution in the low-dimensional space. This allows dis-
similar points to be placed further apart in the map, helping
to separate clusters more clearly.

43.2.4 Autoencoders

An autoencoder is a type of neural network used for unsupervised
learning, typically for dimensionality reduction. It consists of two
parts:

• An encoder network that compresses the high-dimensional
input data X into a low-dimensional latent representation,
often called a ”bottleneck”.

• A decoder network that attempts to reconstruct the original
input X from the low-dimensional representation.

The network is trained to minimize the reconstruction error (e.g.,
Mean Squared Error) between the output Y and the original input
X. After training, the encoder part of the network can be used on
its own to generate the low-dimensional embeddings for the data.

43.3 DBSCAN (Density-Based Spatial Cluster-
ing of Applications with Noise)

DBSCAN is a density-based clustering algorithm that can discover
clusters of arbitrary shape and identify outliers. It defines clusters
based on the density of data points in the feature space.

43.3.1 Key Definitions:

• Neighborhood of x, Nε(x): The set of points within a dis-
tance ε from x.

Nε(x) = {xi : ∥xi − x∥ ≤ ε}

• Core Point: A point x is a core point if its neighborhood
contains at least ‘minPts‘ points: |Nε(x)| ≥ minPts.

• Border Point: A point x is not a core point, but it is within
the ε-neighborhood of a core point c.

• Noise Point: Any point that is neither a core point nor a
border point. These are considered outliers.

43.3.2 Algorithm:

1. Mark all points as unvisited.

2. For each unvisited point x:

(a) Mark x visited and compute Nε(x).

(b) If x is a core point, start a new cluster:

• Add all points in Nε(x) to the cluster.

• Recursively, for each new core point x′ found in the
cluster, add its entire Nε(x

′) to the cluster.

(c) Else (if x is not a core point), mark x as noise (it may
later be identified as a border point if found in a core
point’s neighborhood).

3. Continue until all points are visited.

43.3.3 Parameter Heuristics:

• minPts: Typically chosen as ≥ d+ 1 (where d is the dimen-
sionality of the data), common values are 4 to 10.

• ε: Can be determined using a ”k-distance plot” (where
k = minPts). The ”elbow” in this plot often indicates a
suitable ε value.

43.4 Model-Based Clustering: Gaussian Mix-
ture Models (GMMs)

Gaussian Mixture Models (GMMs) are probabilistic models that
assume data points are generated from a mixture of a finite num-
ber of Gaussian distributions with unknown parameters. GMMs
model the data density as a weighted sum of Gaussians:

p(x) =

k∑
i=1

πiN (x|µi,Σi)

where k is the number of components, πi are the mixing coefficients
(prior probabilities,

∑k
i=1 πi = 1), and N (x|µi,Σi) is a multivari-

ate Gaussian distribution with mean µi and covariance matrix Σi.

43.4.1 Expectation-Maximization (EM) Algorithm for
GMMs:

The parameters of the GMM (µi,Σi, πi) are typically learned using
the Expectation-Maximization (EM) algorithm, an iterative opti-
mization method:

1. Expectation Step (E-step): For each data point xj , com-
pute the posterior probability (responsibility) γji that xj be-
longs to cluster i, based on the current parameter estimates:

γji =
πiN (xj |µi,Σi)∑k
l=1 πlN (xj |µl,Σl)

2. Maximization Step (M-step): Update the parameters
(µi,Σi, πi) to maximize the likelihood of the observed data,
using the responsibilities computed in the E-step:

Ni =

n∑
j=1

γji

µnew
i =

1

Ni

n∑
j=1

γjixj

Σnew
i =

1

Ni

n∑
j=1

γji(xj − µnew
i)(xj − µnew

i)⊤

πnew
i =

Ni

n

3. Repeat E-step and M-step until the parameters converge (e.g.,
the change in log-likelihood falls below a threshold).

19

