
ACVM/FRI

1 Linear Approximation

The linear approximation of f(x) at a point a is the linear
function:

L(x) = f(a) + f ′(a)(x− a).

The linear approximation of f(x, y) at (a, b) is the linear
function:

L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

the linearization can be written more compactly using the gra-
dient as:

L(x̃) = f(ã) +∇f(ã) · (x̃− ã).

1.1 Chain Rule

The single variable chain rule is given by:

dy

dx
=

df

du
· du
dx

For a multivariate function, the chain rule is:

∂y

∂xi
=

∂f

∂u
· ∂u

∂xi
+

∂f

∂v
· ∂v

∂xi
+

∂f

∂w
· ∂w
∂xi

+ · · ·

The matrix form of the multivariate chain rule is expressed using
Jacobian matrices:

D(y)(x) = Df(u)(x) ·Dg(x)

where Df(u) and Dg(x) are the Jacobian matrices of f and g re-
spectively.

1.2 Tangent line, tangent plane & tangent hyper-
plane

The equation of the tangent line to the curve y = f(x) at the point
(a, f(a)) is:

y = f(a) + f ′(a)(x− a)

The equation of the tangent plane to the surface z = f(x, y) at
the point (a, b, f(a, b)) is:

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

Here, fx and fy denote the partial derivatives of f with respect
to x and y, respectively.

For a function f(x1, x2, . . . , xn) at a point a = (a1, a2, . . . , an),
the tangent hyperplane is given by:

f(x) ≈ f(a) +∇f(a) · (x− a)

where ∇f(a) is the gradient of f at a and x is the vector of variables.

1.3 Derivatives of Vector Functions

Let F : Rn → Rm, F (x) =


f1(x)
f2(x)

...
fm(x)

 be a vector function of the

variables x = (x1, ..., xn).
Recall that the derivative of the vector function F with respect

to the vector of variables x̃ is defined as

∂F̃

∂x̃
= JF (x̃) =


∂f1
∂x1

(x̃) · · · ∂f1
∂xn

(x̃)
...

. . .
...

∂fm
∂x1

(x̃) · · · ∂fm
∂xn

(x̃)


The second derivative of the function f : Rn → R (here m = 1)

is given as

∂2f

∂x̃2
=

∂

∂x̃

(
∂f

∂x̃

)T

.
A function f : Rn → R is convex on D, if

f(tx̃+ (1− t)ỹ) ≤ tf(x̃) + (1− t)f(ỹ)

for all x̃, ỹ ∈ D and for all t ∈ [0, 1]. The function f is concave on
D, if the function −f is convex on D.

1.4 Rules for Differentiating Vector Functions

1. ∂x̃
∂x̃ = In

2. If A ∈ Rm×n, then ∂Ax̃
∂x̃ = A.

3. If ã ∈ Rn, then ∂ãT x̃
∂x̃ = ãT .

4. If A ∈ Rn×n, then ∂(x̃TAx̃)
∂x̃ = x̃T (A+AT).

5. If A ∈ Rn×n is a symmetric matrix, then ∂(x̃TAx̃)
∂x̃ = 2x̃TA.

6. ∂∥x̃∥2

∂x̃ = 2x̃T .

7. If z̃ = z̃(x̃) and ỹ = ỹ(x̃), then ∂(ỹT z̃)
∂x̃ = ỹT ∂z̃

∂x̃ + z̃T ∂ỹ
∂x̃ .

8. If G : DG ⊆ Rm → Rn and F : DF ⊆ Rn → Rp and H = F ◦G,
then ∂H

∂x̃ = ∂F
∂G (G̃(x̃))∂G∂x̃ .

1.5 Linear Approximation of Vector Functions

f(X(p1, p2, . . . , pm), S(p1, p2, . . . , pm)) ≈ kn(p1, p2, . . . , pm)

X =

X1(p1, . . . , pm)
...

Xn(p1, . . . , pm)

 , δ =

δ1...
δn

 , p =

 p1
...
pm


f(X(p0 + δ)) ≈ f(X(p0)) + df

df =
∂f

∂X

∂X

∂p
δ = Jfδ, take expansion of

∂X

∂p
around p0

dX =


∂X1

∂p1

∂X1

∂p2
. . . ∂X1

∂pm

...
...

. . .
...

∂Xn

∂p1

∂Xn

∂p2
. . . ∂Xn

∂pm


 δ1

...
δm

 =


m∑
j=1

∂X1

∂pj
δj

...
m∑
j=1

∂Xn

∂pj
δj


Jf =

∂f

∂X

∂X

∂p

f(X(p0 + δ)) ≈ f(X(p0)) + Jfδ

2 Optical Flow

Must watch: All about optical flow.

1

https://www.youtube.com/watch?v=lnXFcmLB7sM&list=PL2zRqk16wsdoYzrWStffqBAoUY8XdvatV

2.1 Optical Flow Constraint Equation

I(x+ δx, y + δy, t+ δt) = I(x, y, t) (1)

I(x+ δx, y + δy, t+ δt) = I(x, y, t) + Ixδx+ Iyδy + Itδt (2)

Subtracting equation (1) from (2):

Ixδx+ Iyδy + Itδt = 0

Divide by δt and take the limit as δt → 0:

Ix
∂x

∂t
+ Iy

∂y

∂t
+ It = 0 (3)

(3) works because of limit - derivative property:

dy

dx
= lim

h→0

f(x+ h)− f(x)

h

m = lim
x→a

f(x)− f(a)

x → a

The constraint equation for optical flow is then:

Ixu+ Iyv + It = 0 (u, v): Optical Flow

The problem is that in this equation we have 2 unknowns and
only 1 equation. We need to solve for u and v.

We solve this by using the Lucas-Kanade and Horn-Schunck
methods. Where we use the local neighbourhood to solve the system
of equations.

2.2 Lucas-Kanade Method

u = δx =
−
(∑

I2y
)
(
∑

IxIt) + (
∑

IxIy) (
∑

IyIt)

(
∑

I2x)
(∑

I2y
)
− (

∑
IxIy)

2

v = δy =
− (

∑
IxIy) (

∑
IxIt)−

(∑
I2x
)
(
∑

IyIt)

(
∑

I2x)
(∑

I2y
)
− (

∑
IxIy)

2

All the sums go from 1 to n, where n is the number of pixels in
the local neighbourhood.

where:

Ix =
∂I

∂x
, Iy =

∂I

∂y
, It =

∂I

∂t
,

and (∑
I2x

)(∑
I2y

)
−
(∑

IxIy

)2

is the determinant of covariance matrix.
To further clarify the system, it can be written in matrix form as:[∑

I2x
∑

IxIy∑
IxIy

∑
I2y

] [
δx
δy

]
= −

[∑
IxIt∑
IyIt

]
ATAd = ATb

where A and b are matrices containing the sums of gradients,
and d is the displacement vector.

And ATA is a covariance matrix of local gradients.
When is this system solvable?

• ATA must not be singular (cannot invert it otherwise)

– Eigenvalues λ1 and λ2 of ATA must not be too small

• ATA has to be well conditioned

– Ratio λ1

λ2
must not be too large

– (λ1 is the larger eigenvalue)

Consequences:

• large λ1, small λ2 → unreliable, we don’t know the direction
(e.g. edge).

• small λ1 & λ2 → unreliable optical flow (e.g. constant back-
ground).

• large λ1 & λ2 → reliable optical flow (e.g. rich texture, lots of
different brightness values).

Conclusions The Lucas-Kanade method is designed for optical
flow estimation, leveraging assumptions of brightness constancy,
small motion, and spatial coherence to track motion in visual
scenes. It excels in controlled environments with minimal background
changes, making it efficient and robust for applications with fixed or
slow-moving cameras. However, its limitations include difficulty han-
dling large motions, varying lighting conditions, appearance changes,
occlusions, and complex scenes.

2.3 Horn-Schunck Method

Flow smoothness error:

Es =

∫∫
D

(u2
x + u2

y + v2x + v2y) dx dy

Color constancy + small motion error:

Ec =

∫∫
D

(Ixu+ Iyv + It)
2 dx dy

E = Ec+ αEs

E =

∫∫
D

L(u, v, ux, uy, vx, vy, x, y) dx dy

L = Ix(Ixu+ Iyv + It)− α(uxx + uyy) ≤ 0

Euler-Lagrange equations:

∂L

∂v
− d

dx

(
∂L

∂ux

)
− d

dy

(
∂L

∂uy

)
= 0

∂L

∂v
− d

dx

(
∂L

∂vx

)
− d

dy

(
∂L

∂vy

)
= 0

∆ =

[
∂2

∂x2

∂2

∂y2

]
[
Ix(Ixu+ Iyv + It)− α∆u = 0
Iy(Ixu+ Iyv + It)− α∆v = 0

]
By discretization ∆u = ū− u, ∆v = v̄ − v:

Ix(Ixu+ Iyv + It)− α∆u = 0 ⇒ (I2x + α)u+ IxIyv = αū− IxIt

Iy(Ixu+ Iyv + It)− α∆v = 0 ⇒ IxIyu+ (I2y + α)v = αv̄ − IyIt

And in matrix form:[
(I2x + α) IxIy
IxIy (I2y + α)

] [
u
v

]
=

[
αū− IxIt
αv̄ − IyIt

]
Solve for [u, v]:

2

[
(I2x + α) IxIy
IxIy (I2y + α)

] [
u
v

]
=

[
u− IxP
v − IyP

]
, P =

(It + Ixū+ Iy v̄)

(I2x + I2y + α)

Solve iteratively by Gauss-Seidel-like approach independently for
each pixel:

[
u(k)

v(k)

]
=

[
ū(k−1) − IxP
v̄(k−1) − IyP

]
, P =

(It + Ixu
(k−1) + Iyv

(k−1))

(I2x + I2y + α)

3 Tracking

3.1 Gradient ascent on a KDE

The KDE calculated from weighted data:

p(x) =

N∑
i=1

wiK(x− xi),

N∑
i=1

wi = 1,

K(x− xi) = exp

(
−∥x− xi∥2

h

)
The density model:

p(x) = C

N∑
i=1

wiK

(
∥x− xi∥2

h

)
The partial derivative (the gradient):

1. ∇p(x) = ∂
∂xp(x) = C

∑N
i=1 wi

∂
∂xK

(
∥x−xi∥2

h

)

2. ∂
∂xK

(
∥x−xi∥2

h

)
= − 2

h2 (x − xi)g
(

∥x−xi∥2

h

)
, where g(r) =

−K(r)

3. ∇p(x) = 2C
h2

[∑N
i=1 wixig

(
∥x−xi∥2

h

)
− x

∑N
i=1 wig

(
∥x−xi∥2

h

)]
Setting the partial derivative to zero ∂

∂xp(x) = 0 gives:

0 =
2C

h2

[
N∑
i=1

wixig

(
∥x− xi∥2

h

)
− x

N∑
i=1

wig

(
∥x− xi∥2

h

)]

Expressing the x:

x =

∑N
i=1 wixig

(
∥x−xi∥2

h

)
∑N

i=1 wig
(

∥x−xi∥2

h

)
Problem: x is on the left-hand as well as the right-hand side. Solu-
tion: apply iterations.

3.1.1 Iterative solution

• Plug x(k) to the right-hand side

• Get a new estimate x(k+1)

x(k+1) =

∑N
i=1 wixig

(
∥x(k)−xi∥2

h

)
∑N

i=1 wig
(

∥x(k)−xi∥2

h

)
• m(k) = x(k+1) − x(k) ... The mean shift vector

The mean shift vector is proportional to the gradient on the pdf!

3

	Linear Approximation
	Chain Rule
	Tangent line, tangent plane & tangent hyperplane
	Derivatives of Vector Functions
	Rules for Differentiating Vector Functions
	Linear Approximation of Vector Functions

	Optical Flow
	Optical Flow Constraint Equation
	Lucas-Kanade Method
	Horn-Schunck Method

	Tracking
	Gradient ascent on a KDE
	Iterative solution

