
AAHRP/FRI

1 Integrali

1.
∫
xa dx =

{
xa+1

a+1
+ C a ̸= −1

ln |x|+ C a = −1

2.
∫
lnx dx = x lnx− x+ C

3.
∫

1√
x
dx = 2

√
x+ C

4.
∫
ex dx = ex + C

5.
∫
ax dx = ax

ln a
+ C

6.
∫
cos(ax) dx = sin(ax)

a
+ C

7.
∫
sin(ax) dx = −cos(ax)

a
+ C

8.
∫
tanx dx = − ln |cosx|+ C

9.
∫

dx
cos2 x

=
∫
sec2 x dx = tanx+ C

10.
∫

dx
sin2 x

=
∫
csc2 x dx = − cotx+ C

11.
∫

1√
1−x2

dx = arcsinx+ C

12.
∫

dx
ax+b

= 1
a
ln|ax+ b|+ C

13.
∫

1
x2+1

dx = arctanx+ C

14.
∫

dx
x2+a2 = 1

a
arctanx

a
+ C

15.
∫ f ′(x)

f(x)
dx = ln|f(x)|+ C

2 Bounds

� Θ(g) = {f ;∃c1, c2, n0 > 0,∀n > n0 : 0 ≤ c1g(n) ≤ f(n) ≤
c2g(n)}

� O(g) = {f ;∃c, n0 > 0,∀n > n0 : 0 ≤ f(n) ≤ cg(n)}
� Ω(g) = {f ;∃c, n0 > 0,∀n > n0 : 0 ≤ cg(n) ≤ f(n)}
� o(g) = {f ;∀c > 0,∃n0 > 0,∀n > n0 : 0 ≤ f(n) < cg(n)}
� ω(g) = {f ;∀c > 0,∃n0 > 0,∀n > n0 : 0 ≤ cg(n) < f(n)}

2.1 Properties

� transitivity f ∈ Θ(g)∧ g ∈ Θ(h) ⇒ f ∈ Θ(h) (for all bounds)
� reflexivity f ∈ Θ(f) (for Θ, O and Ω)
� symmetry f ∈ Θ(g) ⇔ g ∈ Θ(f)
� transpose symmetry f ∈ O(g) ⇔ g ∈ Ω(f)
f ∈ o(g) ⇔ g ∈ ω(f)

2.2 Simplified Masters

� T (n) = aT (nb) + Θ(nd)
a ≥ 1; b > 1; d ≥ 0

� a > bd → T (n) = Θ(nlogb a)
� a = bd → T (n) = Θ(nd logb n)
� a < bd → T (n) = Θ(nd)

2.3 Masters

� T (n) = aT (nb) + f(n)
a ≥ 1; b > 1

� f(n) = O(nlogba−ϵ) → T (n) = Θ(nlogb a), ϵ > 0
� f(n) = Θ(nlogba) → T (n) = Θ(nlogba log(n))
� f(n) = Ω(nlogba+ϵ) → T (n) = Θ(f(n)), ϵ > 0 and af(nb) ≤
cf(n) for some c < 1 and big enough n

� case2 ext: f(n) = Θ(nlogbalogk(n)) → T (n) =
Θ(nlogbalogk+1(n))

2.4 Akra-Bazzi

T (n) =

k∑
i=1

aiT (bin) + f(n), n > n0

� n0 ≥ 1
bi
, n0 ≥ 1

1−bi
for each i,

� ai > 0 for each i,
� 0 < bi for each i,
� k ≥ 1,
� f(n) is non-negative function,

� c1f(n) ≤ f(u) ≤ c2f(n), for each u satisfying condition:
bin ≤ u ≤ n

� T (n) = Θ(np(1 +
∫ n

1
f(u)
up+1 du)) we get p from:

∑k
i=1 aib

p
i = 1

2.5 Extended Akra-Bazzi

T (n) =
∑k

i=1 aiT (bin+ hi(n)) + f(n), n > n0 all of the conditions
from Akra-Bazzi still hold plus: |hi(n)| = O(n

log2 n
)

2.6 Annihilators

Steps:

� Write the recurrence in operator form.
� Extract the annihilator for the recurrence.
� Factor the annihilator (if necessary).
� Extract the generic solution form the annihilator.
� Solve for coefficients using base cases (if known).

Operator Definition

addition (f + g)(n) := f(n) + g(n)

subtraction (f − g)(n) := f(n)− g(n)

multiplication (a · f)(n) := a · (f(n))
shift Ef(n) := f(n+ 1)

k-fold shift Ekf(n) := f(n+ k)

composition (X + Y)f := Xf + Y f

(X − Y)f := Xf − Y f

XY f := X(Y f) = Y (Xf)

distribution X(f + g) = Xf +Xg

Operator Functions annihilated

E − 1 α

E − a αan

(E − a)(E − b) αan + βbn (a ̸= b)

(E − a0)(E − a1) · · · (E − ak)
∑k

i=0 αia
n
i (ai distinct)

(E − 1)2 αn+ β

(E − a)2 (αn+ β)an

(E − a)2(E − b) (αn+ β)an + γbn (a ̸= b)

(E − a)d (
∑d−1

i=0 αin
i)an

If X annihilates f , then X also annihilates Ef .

If X annihilates both f and g,

then X also annihilates f ± g.

If X annihilates f , then X also annihilates αf ,

for any constant α.

If X annihilates f and Y annihilates g,

then XY annihilates f ± g.

3 Pseudo random generator

3.1 Linear congruential generators

xi = (axi−1 + c) mod m

� RANDU: xi = 65539xi−1 (mod 231)
� MINSTD xi = 16807xi−1 (mod 231 − 1)

3.2 Blum-Blum-Shrub

� p, q ∈ P, large (at least 40 decimal places)
� m = pq
� Xi = X2

i−1 (mod m)
� bi = parity(Xi)

1

4 Amortized analysis

� Aggregated analysis - Determine upper bound T (n) for the
total cost of a sequence of n operations. Amortized cost per

operation is T (n)
n .

� Accounting method - Some operations are overcharged to pay
for other operations.

� Potential method c′i = ci+Φ(Di)−Φ(Di−1); Φ(Dn) ≥ Φ(D0)

4.1 Vsote zaporedji

�

∑n
i=1 i =

n(n+1)
2

�

∑n
i=m zi = zm−zn+1

1−z ;
∑inf

i=0 ar
i = a

1−r pri |r| < 1

� Hn =
∑n

i=1
1
i = lnn+ γ + 1

2n

4.2 Parallel programming

� Amdahl S = 1
f
P +(1−f)

� Gustafson SP =
Ts+PTp

Ts+Tp

5 Linear programming

5.1 Standard LP

� given n real numbers c1, c2, . . . , cn
� m real numbers b1, b2, . . . , bm
� m× n real numbers aij for i = 1, . . . ,m and j = 1, . . . , n
� we wish to find n real numbers x1, . . . , xn that

maximize
∑n

j=1 cjxj subject to
∑n

j=1 aijxj ≤ bi,∀i =
1, . . . ,m;xj ≥ 0

5.2 Transformations

� min f(x) → max−f(x)
� a ≥ b → −a ≤ −b
� x ∈ ℜ → x = x′ − x′′

� a = b → a ≤ b;−a ≤ −b

5.3 Metroplis algorithm

� If better neighbour exists, move to it.
� Otherwise choose a random neighbour, but accept better
neighbours with larger probability.

� Decrease the probability of acceptance.
� In time, stohastic search turns into deterministic LS.

5.4 Simulated annealing

� Start with a random state S.
� Select random neighbour S′
� If q(S′) < q(S), move to S′.
� Otherwise, move with probability e

−(q(S′)−q(S))
T

Decrease temperature while it’s not close to zero. Usually a geo-
metrical rule is used: T ′ = λT , 0 < λ < 1 (typically λ = 0.95)

6 Metaheuristics

6.1 Tabu search

Idea: to prevent returning back to the same local extreme, supress
(parts of) solutions.

6.2 Guided local search

Metaheuristics which guide local search and helps it avoid local
extremes.

� define properties (attributes) of solutions

� penalize attributes, which occur too often in local extrema
� auxiliary objective function

h(s) = g(s) + λ ·
∑

i is a feature

(pi · Ii(s))

Utility of punishment for property i in local extreme s∗

utili(s∗) = Ii(s∗) ·
ci

1 + p

ci is cost, pi is current punishment for property i
In local extreme we punish the property with the largest utility (we
increment pi by 1).

6.3 Variable neighbourhood search

Idea: define several neighbourhood structures and change neigh-
bourhood when reaching local extreme in one of them. Order
neighbourhoods by the efficiency of computation.

6.4 Differential evolution

DE/vector/n/scheme
vector - rand,best,current-to-best,pbest; scheme - bin,exp,arith

7 Swarm intelligence

� fixed population
� autonomous individual
� communication between agents
� aggregation of similar animals, generally cruising in the same
direction

� simple rules for each individual
� decentralized
� emergent behaviour

7.1 Ant colony optimization

� ants find the shortest path to food source from the nest
� they deposit pheromone along traveled path, which is used
by other ants to follow the trail

� this kind of indirect communication via the local environment
is called stigmergy

� adaptability, robustness and redundancy
Possible daemon actions to apply centralized actions.

7.2 Particle swarm optimization

� Individuals strive to improve themselves and often achieve
this by observing and imitating their neighbours.

� Each individual has the ability to remember.
� Each particle is represented with two vectors, location and
velocity.

7.2.1 Information exchange in the swarm

� historically best location x∗

� best location of informants x+

� globally best location x!

7.2.2 Moving

� Compute the fitness of each particle and update x∗, x+ and
x!.

� Update the representation of particle. Velocity vector takes
into account updated directions x∗, x+ and x!. Each direction
is updated with some random noise.

� Move the particle in the direction of the velocity vector.

2

