—_

® N oot

1.

12.
13.
14.

15.

2.1

2.2

e a>bl—T(n)=
e a=0bl = T(n)=

AAHRP/FRI

patl

Integrali
a1l +C

ad —
S du { In|x|+C

fInzder=zlhz—z+C

1 _
[etde=e"+C
fa‘”da:—m—i—C
[cos(az) dz = Smt(;m) +C
[sin(az) dz = 7_602(”) +C
ftanxd:c—fln|cosx\+0
ICOSQ —fsec rdr =tanx + C

smz = [esc’wdr = —cotz + C
mdm = arcsinz + C

aiib = Linjaz +b|+ C
[2+1 dx = arctanz + C
f % = farctcmg +C

ff(;; dz = In|f(z)| + C

a#—1

a=-1

Bounds

O(g) = {f;3e1,c2,m9 > 0,Vn > ng
cag(n)}

O(g) ={f;3c,n0 > 0,Yn >ngp : 0 < f(n)
Q(g) = {f;3¢,n0 > 0,¥n > ng : 0 < cg(n)
o(g) = {f;¥Ye > 0,3ng > 0,¥n >ng: 0 <
w(g) ={f;Ve>0,3Ing > 0,¥n >ngp:0<

:0 < cig(n) <

cg(n)}
f(n)}
f(n) <cg(n)}
cg(n) < f(n)}

f(n) <

|/\|/\

Properties

transitivity f € ©(g) Ag € ©(h) = f € O(h) (for all bounds)
reflexivity f € ©(f) (for ©, O and Q)

symmetry f € ©(g) < g € O(f)

transpose symmetry f € O(g) < g € Q(f)

feolg) & gew(f)

Simplified Masters

T(n) =aT(})+ O(n?)

a>1;b>1;d>0

@(logba)
O(n legb”)

e a<bd— T(n)=0(n?)

2.3

24

o J(n) = Qnlonete) - Tn) =

Masters

T(n)=aT(})+ f(n)
a>1;0>1
f(n) = O(nlo9a=¢) = T(n) = O(n'°& %), ¢ > 0
f(n) = ©(n'*) = T(n) = O(n'*"*log(n))

O(f(n)),e > 0 and af(%)
cf(n) for some ¢ < 1 and big enough n
case2 ext: f(n) = ©O(n!°9%%ogk(n))
@(nlogbalongrl(n))

IN

- Tmn) =

Akra-Bazzi

k
T(n) = ZaiT(bin) + f(n),n > ng

ng > b s 0 > T for each 1,
a; >0 ‘for each z

0 < b; for each 1,

k>1,

f(n) is non-negative function,

2.5

c1f(n) < f(u) < caf(n), for each w satisfying condition:
bn<u<n
T(n) =0O(nP(1+ [;" Z,Sﬂ du)) we get p from: Zle a;b? =1

Extended Akra-Bazzi

T(n) = Zle a;T(b;n+ hi(n)) + f(n),n > ng all of the conditions
from Akra-Bazzi still hold plus: |h;(n)| = (log—n)

2.6

Annihilators

Steps:

Write the recurrence in operator form.

e Extract the annihilator for the recurrence.

e Factor the annihilator (if necessary).

e Extract the generic solution form the annihilator.
e Solve for coefficients using base cases (if known).
Operator Definition

addition | (f +g)(n) := f(n) +g(n)
subtraction | (f —g)(n) := f(n) — g(n)

multiplication (a- f)(n) :=a-(f(n))
shift Ef(n):=f(n+1)

k-fold shift

E*f(n) := f(n+ k)

composition X+Y)f=Xf+Yf
(X-=Y)f=Xf-Yf
XY[f:=X(Y[)=Y(Xf)
distribution X(f+9)=Xf+Xg
Operator Functions annihilated
EF-1 o}
E—a aa”
(E—a)(E-0D) aa”™ + pb" (a #£b)
(E—agp)(F—a1) - (E—ag) Zf:o a;al (a; distinct)
(E—1)2 an+
(E —a)? (an + B)a™
(E—a)*(E—0) (an+ B)a™ +~vb"(a # b)
(E —a) (i in')a”

If X annihilates f, then X also annihilates Ef.
If X annihilates both f and g,
then X also annihilates f + g.

If X annihilates f, then X also annihilates af,

for any constant a.

If X annihilates f and Y annihilates g,
then XY annihilates f + g.

3.1

Pseudo random generator

Linear congruential generators

z; = (ax;—1 +¢) modm

e RANDU: z; = 65539z;_; (mod 23!)

e MINSTD z; = 16807z;_1 (mod 23! —

3.2

1)

Blum-Blum-Shrub

p,q € P, large (at least 40 decimal places)
m = pq

X; = X2, (mod m)

b: = parity(X:)

4 Amortized analysis

e Aggregated analysis - Determine upper bound T'(n) for the
total cost of a sequence of n operations. Amortized cost per
operation is @

e Accounting method - Some operations are overcharged to pay
for other operations.

e Potential method ¢, = ¢;+®(D;) —®(D;_1); ®(D,,) > (Do)

Vsote zaporedji

'Zn_l i zMm—zntl, inf i __ _a :
o Yim? =ET i iear = 14 prifr| <1

e Hy=Y7" t=Inn+~v+ 4+

n(n+1)

4.2 Parallel programming
— 1
e Amdahl § = I70-n
Ts+PTy,

e Gustafson Sp = = T
sTip

5 Linear programming

5.1 Standard LP
e given n real numbers c1, ¢, ..., Cp
e m real numbers by, bo,..., b,
e m x n real numbers a;; fori=1,...,mand j=1,...,n

e we wish to find n real numbers z1,...,z, that
maximize) i, cjz; subject to Y70 ajz; <
1,....m;z; >0

bi,Vi =

5.2 Transformations

min f(z) — max —f(x)
a>b— —a<-b
reR—z=12 —12"
a=b—a<b—a<-b

5.3 Metroplis algorithm

e If better neighbour exists, move to it.

e Otherwise choose a random neighbour, but accept better
neighbours with larger probability.

e Decrease the probability of acceptance.

e In time, stohastic search turns into deterministic LS.

5.4 Simulated annealing

e Start with a random state S.

e Select random neighbour S/

o If ¢(S7) < ¢q(S), move to Sr.

e Otherwise, move with probability e
Decrease temperature while it’s not close to zero. Usually a geo-
metrical rule is used: 77 = AT, 0 < A < 1 (typically A = 0.95)

—(a(S8)—=q(S))
T

6 Metaheuristics

6.1 Tabu search

Idea: to prevent returning back to the same local extreme, supress
(parts of) solutions.

6.2 Guided local search

Metaheuristics which guide local search and helps it avoid local
extremes.
e define properties (attributes) of solutions

e penalize attributes, which occur too often in local extrema
e auxiliary objective function

h(s) =g(s)+ -

>

i is a feature

(pi - Li(s))

Utility of punishment for property ¢ in local extreme sx
Ci
1+p

util; (sx) = I;(s%) -

¢; is cost, p; is current punishment for property 4
In local extreme we punish the property with the largest utility (we
increment p; by 1).

6.3 Variable neighbourhood search

Idea: define several neighbourhood structures and change neigh-
bourhood when reaching local extreme in one of them. Order
neighbourhoods by the efficiency of computation.

6.4 Differential evolution

DE /vector/n/scheme
vector - rand,best,current-to-best,pbest; scheme - bin,exp,arith

7 Swarm intelligence

fixed population

autonomous individual

communication between agents

aggregation of similar animals, generally cruising in the same
direction

simple rules for each individual

e decentralized

e emergent behaviour

7.1

e ants find the shortest path to food source from the nest
e they deposit pheromone along traveled path, which is used
by other ants to follow the trail
e this kind of indirect communication via the local environment
is called stigmergy
¢ adaptability, robustness and redundancy
Possible daemon actions to apply centralized actions.

Ant colony optimization

7.2 Particle swarm optimization

e Individuals strive to improve themselves and often achieve
this by observing and imitating their neighbours.

e Each individual has the ability to remember.

e Each particle is represented with two vectors, location and
velocity.

7.2.1 Information exchange in the swarm

e historically best location x*
e best location of informants z™
e globally best location z'

7.2.2 Moving

e Compute the fitness of each particle and update z*, z+ and
1
T
e Update the representation of particle. Velocity vector takes
into account updated directions z*, 1 and z'. Each direction
is updated with some random noise.

e Move the particle in the direction of the velocity vector.

